Oligopoly

Bruno Salcedo

Economics 2261 · Intermediate Micro II · Winter 2020

cournot competition

• Two firms 1 and 2 with constant marginal costs c = 10 chose quantities $q_1, q_2 \in [0, 50]$ and face prices

$$P(q_1, q_2) = 100 - q_1 - q_2$$

• Payoffs are given by:

$$u_1(q_1, q_2) = (90 - q_2 - q_1)q_1$$
 $u_2(q_1, q_2) = (90 - q_1 - q_2)q_2$

• Best responses are given by:

$$BR_1(\theta_2) = 45 - \frac{1}{2}q_2$$
 $BR_2(\theta_1) = 45 - \frac{1}{2}q_1$

Firm 2's best response function only takes values between 20 and 45

Knowing that firm 2's quantity will be between 20 and 45, firm 1's best responses are between $BR_1(20) = 35$ and $BR_1(45) = 22.5$

Knowing that firm 1's quantity will be between 22.5 and 35, firm 2's best responses are between $BR_2(22.5) = 33.75$ and $BR_2(35) = 27.5$

Knowing that firm 2's quantity will be between 27.5 and 33.75, firm 1's best responses are between $BR_1(27.5) = 31.25$ and $BR_1(33.75) = 28.125$

Knowing that firm 1's quantity will be between 28.125 and 31.25, firm 2's best responses are between $BR_2(28.125)$ and $BR_2(31.25)$

Continuing this process, the only rationalizable strategy for each firm is $q_i = 30$

Can firm 1 rationalize choosing $q_1 = 29$?

For firm 1 to choose $q_1=$ 29, it must believe that firm 2 will choose on average $ar{q}_2=$ 32

For firm 2 to choose $q_2=$ 32, it must believe that $ar{q}_1=$ 26

For firm 1 to choose $q_1=$ 26, it must believe that $ar{q}_2=$ 38

For firm 2 to choose $q_2 = 38$, it must believe that $\bar{q}_1 = 14$

This is never rational because firm 1 will always choose $q_1 > 20$ Hence firm 1 cannot rationalize choosing $q_1 = 29$