Institutions

Bruno Salcedo

Economics 2261 • Intermediate Micro II • Winter 2020
©(1)(3)(

mechanism deisgn

social welfare

how should people behave?

social welfare

how should people behave?

game theory

how do people behave given an institution?

game theory

how do people behave given an institution?

social dilemmas

individually optimal \nRightarrow socially optimal

mechanism design

which institutions induce desired behavior?

mechanism design

which institutions induce desired behavior?

braess paradox

-4,000 drivers need to go from A to B

- Segments $A C$ and $D B$ are wide but long
- Segments $A D$ and $C B$ are short but narrow

College at
Western.

Western University O
Ivey Business School

oank Playground iild Pool/

Westmount Cinemas...

(41) Burger King

traffic pattern

- Each driver chooses the fastest route taking traffic into account
- As a result, half the drivers take each route and takes 65 min

- Politician proposes a bridge connecting D to C
- How much should we pay for it?

- Now, all cars will take the route ADCB and take 80 min!

Adding resources to a network can worsen its performance

- Selfish (but normal) behavior-congestion externalities are not internalized
- New road concentrates drivers on the same route \Longrightarrow increases externalities
- A randomly added road has close to a 50-50 chance of worsening congestion
- Ring roads vs. though highways
- New roads can worsen traffic even without induced demand
- Closing/narrowing roads can improve traffic
- Political Economics issue—hard to implement non-intuitive policies

a roommates' dilemma

CDN\$ 999.99

, prime

FREE Delivery by Saturday

Get it Friday if you order within 18 hours and 22 minutes and choose paid shipping at checkout.

In Stock.

Quantity: 1 ث
\# Add to Cart
$\square \quad$ Buy Now

Ships from and sold by Amazon.ca.

Item arrives in packaging that reveals what's inside and can't be hidden. If this is a gift, consider shipping to a different address.

decisions

- Buy or not?
- How to split cost? $\quad t_{F}+t_{G}=1000$
- No resale value
- No maintenance
- No restricting usage
- No monitoring of usage

How would you and your roommate make this decision?

proposed mechanisms

- Buy only if both are willing to split cost 50-50
- Whoever drinks more coffee/wants it more pays proportionally more
- Frankie buys the machine and Gary compensates her depending on how much espresso he plans to drink
- Each roommate buys their own machine without sharing
- Alternated bargaining

Which is the best mechanism to use?

proposed mechanisms

- Buy only if both are willing to split cost 50-50
- Whoever drinks more coffee/wants it more pays proportionally more
- Frankie buys the machine and Gary compensates her depending on how much espresso he plans to drink
- Each roommate buys their own machine without sharing
- Alternated bargaining

Can we find at least one Pareto efficient mechanism?

quasilinear utility

- Utility from buying = value from using - money paid

$$
u_{i}= \begin{cases}v_{i}-t_{i} & \text { if buy } \\ 0 & \text { if not }\end{cases}
$$

- t_{i} could be negative as long as $t_{F}+t_{G}=1000$
- No-money burning (for now)
- quasilinear utility + monetary transfers implies

$$
\text { Pareto } \Longleftrightarrow \text { Utilitarian }
$$

- Efficiency = maximizing sum of utilities

$$
u_{F}+u_{G}= \begin{cases}v_{F}+v_{G}-1000 & \text { if buy } \\ 0 & \text { if not }\end{cases}
$$

Efficiency - Buy if and only if $v_{F}+v_{G} \geq 1000$

an efficient mechanism

- Only Franky knows $v_{F}=1,200$
- Only Gary knows $v_{G}=750$
- The mechanism relies on truthful reporting ($a_{i}=v_{i}$)
- Suppose Franky knows $v_{G} \geq 300$
- If she reports truthfully she pays $t_{F}=1,000$
- If she underreports $a_{F}=700$ she only pays $t_{F}=700$
- The machine would be bought either way

The proposed efficient mechanism is not incentive compatible

50-50 split

incentive compatibility

50-50 split mechanism is incentive compatible

- $v_{i}>500 \Longrightarrow$ saying yes is weakly dominant
- $v_{i}<500 \Longrightarrow$ saying no is weakly dominant

inefficiency

question

- Efficient mechanism—not incentive compatible
- 50-50 split—incentive compatible but inefficient

Is there an efficient incentive-compatible mechanism?
the revelation principle

social choices

How to choose a public policy that affects different individuals with (typically) different preferences over policies, if the individual's preferences are private information?

framework

- Set A of alternatives a, b, \ldots
- A set of individuals $i=1, \ldots, n$
- For each individual i, a quasilinear utility function

$$
u_{i}\left(a, t_{i}\right)=v_{i}(a)-t_{i}
$$

- Pareto efficiency is equivalent to maximizing sum of values

$$
\sum_{i} v_{i}(a)
$$

private information

Problem - It is often the case that the preferences of each individual are known only by the individual themself

- A mechanism consists of

1. Set of actions or messages M_{i} for each i
2. An allocation rule $\alpha\left(m_{1}, \ldots, m_{n}\right) \in \mathcal{A}$
3. A transfer rule for each player $t_{i}\left(m_{1}, \ldots, m_{n}\right)$

- Mechanism + Preferences $=$ Game
- Solve using cautiousness (for example)
- Optimal mechanism design—maximizing profits
- Efficient mechanism design—maximizing social welfare (Pareto)

Definition - A mechanism is efficient if the predicted outcomes of the game always maximize $\sum_{i} v_{i}$

direct mechanisms

- Agents are asked to report their preferences
- Reports are made simultaneously and independently
- Alternative and transfers determined by $\alpha(\cdot)$ and $t(\cdot)$

Definition - A direct mechanism is incentive-compatible if lying is weakly dominated by truth-telling.

revelation principle

Theorem - Restricting attention to incentive-compatible direct mechanisms is without loss of generality
the vickrey mechanism

- Anna inherited unwanted artwork
- Bob, Charlie, and David want it for personal use

allocating artwork

	a	b	c	d
v_{A}	0	0	0	0
v_{B}	0	7	0	0
v_{C}	0	0	10	0
v_{D}	0	0	0	4

Vickrey mechanism

- Sealed-bid second-price auction (for a single object)
- Direct mechanism
- Each buyer makes a bid m_{i}
- Object is allocated to the buyer with the highest bid
- The winner pays the second highest bid to the seller
- Buyers only pay if they win

allocating artwork using Vickrey

	a	b	c	d
	v_{A}	0	0	0
	0			
v_{B}	0	7	0	0
v_{C}	0	0	10	0
v_{D}	0	0	0	4

Charlie gets the artwork and pays $\$ 7$ to Anna

Claim - Under some conditions, the Vickrey mechanism is efficient and incentive compatible

- Two important conditions: private values and no externalities

incentive compatibility

- Highest bid of j 's opponents $p=\max \left\{m_{j} \mid j \neq i\right\}$
- Truth-telling weakly dominates overbidding and underbidding

$$
m_{i}=v_{i} \quad m_{i}=\hat{v}_{i}>v_{i}
$$

$v_{i}<\hat{v}_{i}<p$	0	0
$p<v_{i}<\hat{v}_{i}$	$v_{i}-p$	$v_{i}-p$
$v_{i}<p<\hat{v}_{i}$	0	$v_{i}-p<0$

- The value of the oilfield v^{*} is the same for all bidders
- Bidders have noisy signals about the value
- Winner curse-winning reveals that others knew the value is low

Claim - Bidders have incentives to underbid in a Vickrey auction with common values

winner curse

- Field has oil $\left(v^{*}=100\right)$ or not $\left(v^{*}=0\right)$ with probability $1 / 2$ each
- Each bidder runs an independent test
- With oil-test always comes back positive
- Without oil—false positive with 1% probability

$$
\operatorname{Pr}(\text { oil } \mid \text { positive test })=\frac{0.5}{0.5+0.005} \approx 99 \%
$$

If you bid a positive amount and someone (truthfully) bids zero, you realize that the field is worthless

inefficiency from externalities

	a	b	c	d
v_{A}	0	0	0	0
v_{B}	0	7	0	0
v_{C}	0	0	10	0
v_{D}	0	0	-7	4

- Efficient outcome-Bob gets artwork
- Truth-telling—Charlie would get it
- Incentive compatibility—David has incentives to report $m_{D}=11$
the vicrey-clarke-groves mechanism
- Vickery auction is efficient and incentive-compatible in some settings
- It fails with common values or consumption externalities
- It is not defined for roommate's problem
- For such cases we can use the Vickery-Clarke-Groves (VCG) mechanism

Compensate/charge each member of society according to their contribution to the social welfare of others

bob's contribution to society

- Consider the efficient outcome in two situations
- Bob is a member of society
- Bob is not a member of society
- Compare the total utility of everyone except Bob
- The difference is called Bob's contribution to society

bob's contribution to society

1. Maximize total welfare to find utilitarian alternative a^{*}
2. Compute total welfare from a^{*} of everyone except Bob

$$
W_{B}^{+}=\sum_{i \neq \mathrm{Bob}} v_{i}\left(a^{*}\right)
$$

3. Find utilitarian alternative if Bob was not a member of society b^{*}
4. Compute total welfare from b^{*} of everyone except Bob

$$
W_{B}^{-}=\sum_{i \neq \mathrm{Bob}} v_{i}\left(b^{*}\right)
$$

5. Bob's contribution to society is the difference

$$
W_{B}^{+}-W_{B}^{-}
$$

artwork example

	b	c	c
	d		
v_{B}	7	0	0
v_{C}	0	10	0
v_{D}	0	0	4

- Single object with private vales and without externalities
- The efficient outcome is $a^{*}=c$
- Total welfare $\sum_{i} v_{i}(b)=10$

bob's contribution to society

	b	c	c
	d		
v_{B}	7	0	0
v_{C}	0	10	0
v_{D}	0	0	4

- With Bob $W_{B}^{+}=10$
- Without Bob the best alternative is $b^{*}=c$
- Without Bob $W_{B}^{-}=10$
- Bob's contribution to society is 0

charlie's contribution to society

	b	c	c
	d		
v_{B}	7	0	0
v_{C}	0	10	0
v_{D}	0	0	4

- With Charlie $W_{C}^{+}=0$
- Without Charlie the best alternative is $b^{*}=b$
- Without Charlie $W_{C}^{-}=7$
- Charlie's contribution to society is -7

VCG mechanism

- Ask everyone to report their values
- Compute allocation and transfers using reported values \hat{v}_{i}
- Implement efficient allocation assuming truthful reporting

$$
\alpha^{\mathrm{VCG}}(\hat{v})=a^{*}(\hat{v})
$$

- Individuals are compensated or charged by their social contribution

$$
t_{i}^{\mathrm{VCG}}(\hat{v})=W_{i}^{+}(\hat{v})-W_{i}^{-}(\hat{v})
$$

Claim - The Vickrey-CLarke-Groves mechanism is always efficient and incentive-compatible

artwork with externalities

	b	c	d
v_{B}	$v_{B}(b)$	0	0
v_{C}	0	$v_{C}(c)$	0
v_{D}	0	-7	$v_{D}(d)$

- For simplicity, assume that the size of the externality is known
- Bidders are only asked to report their private consumption value
- There are two interesting cases

when Charlie wins

- Suppose $v_{C}(c)-7>v_{B}(b)>v_{D}(d)$
- With Charlie-efficient to give the object to Charlie
- Without Charlie-efficient to give the object to Bob

$$
t_{C}^{\mathrm{VCG}}=\left[v_{B}(c)+v_{D}(c)\right]-\left[v_{B}(b)+v_{D}(b)\right]=-V_{B}(b)-7
$$

- VCG transfer $=$ second-highest bid + externality

when Bob wins over Charlie

- Suppose $v_{B}(b)>v_{C}(c)-7>v_{D}(d)$
- With Bob-efficient to give the object to Bob
- Without Bob-efficient to give the object to Charlie

$$
t_{B}^{\mathrm{VCG}}=\left[v_{C}(b)+V_{D}(b)\right]-\left[v_{C}(c)+V_{D}(d)\right]=-V_{C}(c)+7
$$

- VCG transfer $=$ second-highest bid - externality

justification

- Efficient by construction (under truthful reporting)
- Utility as a function of reports

$$
u_{i}=v_{i}\left(a^{*}(\hat{v})\right)+t_{i}^{\mathrm{VCG}}(\hat{v})
$$

- Substituting with VCG transfers

$$
\begin{aligned}
u_{i} & =\underbrace{v_{i}\left[a^{*}(\hat{v})\right]+W_{i}^{+}(\hat{v})-W_{i}^{-}(\hat{v})}_{\text {maximized if truthful }} \\
& =\underbrace{v_{i}\left[a^{*}(\hat{v})\right]+\sum_{j \neq i} \hat{v}_{j}\left[a^{*}(\hat{v})\right]}_{\text {independent of } \hat{v}_{i}}-\underbrace{\sum_{i \neq j} \hat{v}_{i}\left[b^{*}(\hat{v})\right]}_{i \neq j}
\end{aligned}
$$

balancing the budget

two more things to worry about

- Budget balance-total transfers from the players must not generate a deficit

$$
\sum_{i} t_{i} \geq 0
$$

- Participation constraints-players have to be willing to participate

$$
\mathbb{E}\left[u_{i}\right] \geq 0
$$

VCG transfers in allocation problems

- VCG transfers in allocation problems

$$
t_{i}^{\mathrm{VCG}}(\hat{v})=-\underbrace{\sum_{j \neq i} \hat{v}_{j}(\alpha(\hat{v}))}_{\text {others' welfare }}+\underbrace{\sum_{j \neq i} \hat{v}_{j}\left(\alpha_{-i}\left(\hat{v}_{-i}\right)\right)}_{\text {independent of } \hat{v}_{i}}
$$

- Players have incentives to report truthfully and maximize welfare

$$
u_{i}\left(\hat{v}_{i}\right)=\underbrace{v_{i}(\alpha(\hat{v}))+\sum_{j \neq i} v_{j}(\alpha(\hat{v}))}_{\text {total welfare }}-\underbrace{\sum_{j \neq i} v_{j}\left(\alpha^{*}\left(\hat{v}_{-i}\right)\right)}_{\text {independent of } \hat{v}_{i}}
$$

VCG transfers in general

- VCG transfers for general social choice problems

$$
t_{i}^{\mathrm{VCG}}(\hat{v})=-\underbrace{\sum_{j \neq i} \hat{v}_{j}(\alpha(\hat{v}))}_{\text {others' welfare }}+\underbrace{H_{i}\left(\hat{v}_{-i}\right)}_{\text {independent of } \hat{v}_{i}}
$$

- Players have incentives to report truthfully and maximize welfare

$$
u_{i}\left(\hat{v}_{i}\right)=\underbrace{v_{i}(\alpha(\hat{v}))+\sum_{j \neq i} v_{j}(\alpha(\hat{v}))}_{\text {total welfare }}-\underbrace{H_{i}\left(\hat{v}_{-i}\right)}_{\text {independent of } \hat{v}_{i}}
$$

- High $H\left(\hat{v}_{-i}\right)$ helps with budget (or maximize revenue)
- Cannot be too high because of participation constraints

roommate's dilemma

- Gary, Frankie, and Oscar the Owner
- Oscar's opportunity cost for selling $c_{O}=1000$ is common knowledge

	buy	not
Gary	v_{G}	0
Frank	v_{F}	0
	-1000	0

	buy	not
Gary	v_{G}	0
	Frank	v_{F}
	0	
	-1000	0

Buy the machine if and only if $v_{G}+v_{F}>1000$

when buying is inefficient

- Suppose $v_{F}+v_{G}<1000$
- The VCG transfers are

$$
\begin{aligned}
& t_{G}^{\mathrm{VCG}}=H_{G}\left(v_{F}, v_{O}\right) \\
& t_{F}^{\mathrm{VCG}}=H_{F}\left(v_{G}, v_{O}\right) \\
& t_{O}^{\mathrm{VCG}}=H_{O}\left(v_{G}, v_{F}\right)
\end{aligned}
$$

when buying is inefficient

- Suppose $v_{F}+v_{G}<v_{O}$
- The roommate's participation constraints imply

$$
\begin{aligned}
H_{G}\left(v_{F}\right) & \leq 0 \\
H_{F}\left(v_{G}\right) & \leq 0 \\
H_{O}\left(v_{G}, v_{F}\right) & \leq 0
\end{aligned}
$$

when jointly buying is efficient

- Suppose $v_{F}<1000, v_{G}<1000$, and $v_{F}+v_{G}>1000$
- The VCG transfers satisfy

$$
\begin{aligned}
& t_{G}^{\mathrm{VCG}}=1000-v_{F}+H_{G}\left(v_{F}\right) \\
& t_{F}^{\mathrm{VCG}}=1000-v_{G}+H_{F}\left(v_{G}\right) \\
& t_{O}^{\mathrm{VCG}}=-v_{F}-v_{G}+H_{O}\left(v_{G}, v_{F}\right)
\end{aligned}
$$

when jointly buying is efficient

- Suppose $v_{F}<1000, v_{G}<1000$, and $v_{F}+v_{G}>1000$
- From the case when buying was inefficient we know

$$
H_{F}\left(v_{G}\right) \leq 0 \quad \text { and } \quad H_{G}\left(v_{F}\right) \leq 0
$$

- Therefore

$$
\begin{aligned}
& t_{G}^{\mathrm{VCG}}=1000-v_{F}+H_{G}\left(v_{F}\right) \leq 1000-v_{F} \\
& t_{F}^{\mathrm{VCG}}=1000-v_{G}+H_{F}\left(v_{G}\right) \leq 1000-v_{G} \\
& t_{G}^{\mathrm{VCG}}=-v_{F}-v_{G}+H_{O}\left(v_{G}, v_{F}\right)
\end{aligned}
$$

when jointly buying is efficient

- Suppose $v_{F}<1000, v_{G}<1000$, and $v_{F}+v_{G}>1000$
- The VCG transfers satisfy

$$
\begin{aligned}
t_{G}^{\mathrm{VCG}} & \leq 1000-v_{F} \\
t_{F}^{\mathrm{VCG}} & \leq 1000-v_{G} \\
t_{G}^{\mathrm{VCG}} & =-v_{F}-v_{G}+H_{O}\left(v_{G}, v_{F}\right)
\end{aligned}
$$

when jointly buying is efficient

- Suppose $v_{F}<1000, v_{G}<1000$, and $v_{F}+v_{G}>1000$
- Oscar's participation constraint implies

$$
\begin{aligned}
& -1000+v_{G}+v_{G}-H_{O}\left(v_{G}, v_{F}\right) \geq 0 \\
\Longrightarrow & H_{O}\left(v_{G}, v_{F}\right) \leq-1000+v_{G}+v_{G}
\end{aligned}
$$

- Therefore

$$
\begin{aligned}
t_{G}^{\mathrm{VCG}} & \leq 1000-v_{F} \\
t_{F}^{\mathrm{VCG}} & \leq 1000-v_{G} \\
t_{G}^{\mathrm{VCG}} & =-v_{F}-v_{G}+H_{O}\left(v_{G}, v_{F}\right) \leq-1000
\end{aligned}
$$

when jointly buying is efficient

- Suppose $v_{F}<1000, v_{G}<1000$, and $v_{F}+v_{G}>1000$
- The VCG transfers satisfy

$$
\begin{aligned}
& t_{G}^{\mathrm{VCG}} \leq 1000-v_{F} \\
& t_{F}^{\mathrm{VCG}} \leq 1000-v_{G} \\
& t_{G}^{\mathrm{VCG}} \leq-1000
\end{aligned}
$$

- And therefore the VCG mechanism runs a deficit

$$
t_{G}^{\mathrm{VCG}}+t_{F}^{\mathrm{VCG}}+t_{G}^{\mathrm{VCG}} \leq 1000-v_{F}-v_{G}<0
$$

impossibility of first-best

roommate's dilemma

	IC	PE	BB	IR
First mechanism	\times	\checkmark	\checkmark	\checkmark
50-50 split	\checkmark	\times	\checkmark	\checkmark
VCG	\checkmark	\checkmark	\times	\checkmark
VCG + forced tax	\checkmark	\checkmark	\checkmark	\times

Can we find a mechanism satisfying all these conditions?

Pareto Efficiency completely determines the allocation rule

Fix some value v_{G}^{0} for Gary and focus on Frank's inentives

Efficient to buy if v_{F} is greater than $v_{F}^{*}:=c_{0}-v_{G}^{0}$

Frank's payment if they do not buy must be zero

Frank's payment if they buy cannot deppend on his report It must be a fixed price $p_{F}=p_{F}\left(v_{G}\right)$

If $p_{F}<v^{*}$ and $p_{F}<v_{F}<v^{*}$, Frank wants to over-report

If $p_{F}<v^{*}$ and $p_{F}<v_{F}<v^{*}$, Frank wants to over-report

If $p_{F}>v^{*}$ and $v^{*}<v_{F}<p_{F}$, Frank wants to under-report

Only incentive compatible price is $p_{F}=v_{F}^{*}=c_{O}-v_{G}$

This is the VCG mechanism!

Claim - When the VCG mechanism runs a deficit, there are no mechanism satisfying PE, IC, BB, and IR.

Claim - There is no efficient mechanism for the provision of public goods that never runs a deficit and satisfies participation constraints.

next time we will discuss what to do when the first-best is impossible

