ECON306 - Quiz 1

2014-5 • 17

Name: \qquad Bruno Salcedo (Answer Key) PSU ID: \qquad

There are 4 questions. You have 40min to answer all of them. Don't forget to write your name and PSU ID (e.g. bxs5142) on all the pages that you want to be graded.

1. [30 pts] Consider the random variables x, y with the following joint distribution

$$
\begin{array}{cccc}
& y=-1 & y=0 & y=1 \\
x=1 & 1 / 8 & 3 / 8 & 1 / 8 \\
x=0 & 1 / 8 & 1 / 8 & 1 / 8
\end{array}
$$

(a) Find the expectation of x

$$
\begin{aligned}
\operatorname{Pr}(x=1) & =\operatorname{Pr}(x=1 \& y=-1)+\operatorname{Pr}(x=1 \& y=0)+\operatorname{Pr}(x=1 \& y=1) \\
& =\frac{1}{8}+\frac{3}{8}+\frac{1}{8}=\frac{5}{8} \\
& \mathbb{E}[x]=1 \cdot \operatorname{Pr}(x=1)+0 \cdot \operatorname{Pr}(x=0)=\operatorname{Pr}(x=1)=\frac{5}{8}
\end{aligned}
$$

(b) Find the expectation of y

$$
\begin{aligned}
\operatorname{Pr}(y=1) & =\operatorname{Pr}(y=1 \& x=1)+\operatorname{Pr}(y=1 \& x=0)=\frac{1}{8}+\frac{1}{8}=\frac{1}{4} \\
\operatorname{Pr}(y=-1) & =\operatorname{Pr}(y=-1 \& x=1)+\operatorname{Pr}(y=-1 \& x=0)=\frac{1}{8}+\frac{1}{8}=\frac{1}{4} \\
\mathbb{E}[y] & =-1 \cdot \operatorname{Pr}(y=-1)+0 \cdot \operatorname{Pr}(y=0)+1 \cdot \operatorname{Pr}(y=1) \\
& =\operatorname{Pr}(y=1)-\operatorname{Pr}(y=-1)=\frac{1}{4}-\frac{1}{4}=0
\end{aligned}
$$

(c) Find the expectation of the product $x y$

The product $x y$ can take three values 1 (if $x=1$ and $y=1$), -1 (if $x=1$ and $y=-1$) and 0 (if $x=0$ or $y=0$).

$$
\begin{gathered}
\operatorname{Pr}(x y=1)=\operatorname{Pr}(x=1 \& y=1)=\frac{1}{8} \\
\operatorname{Pr}(x y=-1)=\operatorname{Pr}(x=1 \& y=-1)=\frac{1}{8} \\
\mathbb{E}[x y]=-1 \cdot \operatorname{Pr}(x y=-1)+0 \cdot \operatorname{Pr}(x y=0)+1 \cdot \operatorname{Pr}(x y=1) \\
=\operatorname{Pr}(y=1)-\operatorname{Pr}(y=-1)=\frac{1}{8}-\frac{1}{8}=0
\end{gathered}
$$

(d) Find the correlation between x and y

First we find the covariance of x and y

$$
\sigma_{x, y}=\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y]=0-\frac{5}{8} \cdot 0=0
$$

The correlation between x and y is thus

$$
\rho_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=\frac{0}{\sigma_{x} \sigma_{y}}=0
$$

(e) Are x and y independent? Justify your answer

No. For instance, notice that:

$$
\operatorname{Pr}(x=1 \mid y=1)=\frac{1}{2} \neq \frac{5}{8}=\operatorname{Pr}(x=1)
$$

(f) Find the probability of the event that the product $x y$ is different from 0

From the answer to (c) we have

$$
\operatorname{Pr}(x y \neq 0)=\operatorname{Pr}(x y=1)+\operatorname{Pr}(x y=-1)=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}
$$

2. [30pts] Consider the random variables x, y with the following joint distribution

	$y=-1$	$y=\sqrt{2}$	$y=\pi$
$x=0$	0.2	0.01	0.09
$x=5$	0.1	0.1	0.2
$x=10$	0.025	0.075	0
$x=20$	0.05	0.05	0.1

(a) Find the marginal distribution of x

$$
\begin{aligned}
\operatorname{Pr}(x=0) & =\operatorname{Pr}(x=1 \& y=-1)+\operatorname{Pr}(x=1 \& y=\sqrt{2})+\operatorname{Pr}(x=1 \& y=\pi) \\
& =0.2+0.01+0.09=0.3 \\
\operatorname{Pr}(x=5) & =\operatorname{Pr}(x=5 \& y=-1)+\operatorname{Pr}(x=5 \& y=\sqrt{2})+\operatorname{Pr}(x=5 \& y=\pi) \\
& =0.1+0.1+0.2=0.4 \\
\operatorname{Pr}(x=10) & =\operatorname{Pr}(x=10 \& y=-1)+\operatorname{Pr}(x=10 \& y=\sqrt{2})+\operatorname{Pr}(x=10 \& y=\pi) \\
& =0.025+0.075+0=0.1 \\
\operatorname{Pr}(x=20) & =\operatorname{Pr}(x=20 \& y=-1)+\operatorname{Pr}(x=20 \& y=\sqrt{2})+\operatorname{Pr}(x=20 \& y=\pi) \\
& =0.05+0.05+0.1=0.2
\end{aligned}
$$

(b) Find the marginal cumulative distribution of x

(c) Find the expectation of x

$$
\begin{aligned}
\mathbb{E}[x] & =0 \cdot \operatorname{Pr}(x=0)+5 \cdot \operatorname{Pr}(x=5)+10 \cdot \operatorname{Pr}(x=10)+20 \cdot \operatorname{Pr}(x=20) \\
& =0 \cdot \frac{3}{10}+5 \cdot \frac{4}{10}+10 \cdot \frac{1}{10}+20 \cdot \frac{2}{10} \\
& =0+2+1+4=7
\end{aligned}
$$

(d) Find the expectation of x^{2}

$$
\begin{aligned}
\mathbb{E}\left[x^{2}\right] & =0^{2} \cdot \operatorname{Pr}(x=0)+5^{2} \cdot \operatorname{Pr}(x=5)+10^{2} \cdot \operatorname{Pr}(x=10)+20^{2} \cdot \operatorname{Pr}(x=20) \\
& =0 \cdot \frac{3}{10}+25 \cdot \frac{4}{10}+100 \cdot \frac{1}{10}+400 \cdot \frac{2}{10} \\
& =0+10+10+80=100
\end{aligned}
$$

(e) Find the variance of x

$$
\mathbb{V}[x]=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}=100-7^{2}=51
$$

(f) Find the conditional distribution of y conditional on $x=5$

$$
\begin{gathered}
\operatorname{Pr}(y=-1 \mid x=5)=\frac{\operatorname{Pr}(y=-1 \text { and } x=5)}{\operatorname{Pr}(x=5)}=\frac{0.1}{0.4}=\frac{1}{4} \\
\operatorname{Pr}(y=\sqrt{2} \mid x=5)=\frac{\operatorname{Pr}(y=\sqrt{2} \text { and } x=5)}{\operatorname{Pr}(x=5)}=\frac{0.1}{0.4}=\frac{1}{4} \\
\operatorname{Pr}(y=\pi \mid x=5)=\frac{\operatorname{Pr}(y=\pi \text { and } x=5)}{\operatorname{Pr}(x=5)}=\frac{0.2}{0.4}=\frac{1}{2}
\end{gathered}
$$

3. [20pts] For each of the following four scatterplots involving random samples for variables x and y
(a) Does the correlation of x and y appear to be positive, negative or close to 0 ?
(b) Do x and y appear to be independent?

Independence: $\underline{\text { NOT independent }}$

Correlation: \qquad

Independence: NOT independent

Correlation: \qquad Negative

Independence: NOT independent
4. [20pts] Which of the following objects are random (R) and which are deterministic (D)?

Random sample	R	D
Statistic	R	D
Empirical distribution	R	D
Estimate	R	D
Sample mean	R	D
Bias of an estimator	R	D
Estimator	R	D
Cumulative probability distribution	R	D
Sampling distribution	R	D

