## **ECON306 – Quiz 4** 2014 · 6 · 7

 Name:
 Bruno Salcedo (Answer Key)
 PSU ID:
 bxs5142

There are 20 questions worth 2 points each. You have 30min to solve all of them. Don't forget to write your name and PSU ID (e.g. bxs5142).

- 1. Which of the following would result in biased estimates of the slope coefficient? (mark all that apply)
  - (a) Omission of an important variable
  - (b) Inclusion of an irrelevant variable
  - (c) Imperfect multicollinearity
  - (d) Pure serial correlation
  - (e) Heterosckedasticity
- Is it true that we should always include every available variable in order to obtain unbiased estimators? No, including irrelevant variables will increase the variance of the OLS estimates.
- 3. What are the consequences for OLS of having pure serial correlation?
  - (a) The usual formula for standard errors is no longer valid
  - (b) OLS is no longer the most efficient unbiased estimator
- **4.** According to the following estimated model:

$$\hat{y}_i = 1 + x_i + 0.5 x_i^2$$
,

what would be the average effect on  $y_i$  of a change  $\Delta x$  for an individual with  $x_i = 1$ ?

$$\Delta y_i = (1 + 2 \times 0.5 x_i) \Delta x_i = 2 \Delta x_i$$

**5.** According to the following model:

$$\log(y_i) = \beta_0 + \beta_1 \log(x_i) + \varepsilon_i,$$

by what percentage would  $y_i$  change on average, if  $x_i$  changed by 8%?

percentual change = 
$$\frac{\Delta y_i}{y_i} = \beta_1 \frac{\Delta x_i}{x_i} = \beta_1 \times 8\%$$

6. Consider the following estimated model:

$$\log(\hat{y}_i) = 20 - 2.5x_{1i} + 3.45x_{2i}.$$

Also consider an individual with  $y_i = 10$ ,  $x_{2i} = 1.15$  and  $x_{2i} = 0.75$ . According to the estimated model, what would be the average change in  $y_i$  if  $x_{1i}$  increased by  $\Delta x_{1i} = 4$ ?

$$\frac{\Delta y_i}{y_i} = \hat{\beta}_1 \Delta x_i = -2.5 \times 4 = -10$$
  
 
$$\Delta y_i = -10 y_i = -100$$

For problems 7–8, consider the following model

$$ACC_i = \beta_0 + \beta_1 DRINK_i + \beta_2 SPEED_i + \beta_3 DRINK_i \times SPEED_i + \varepsilon_i$$

 $ACC_i$  = the probability of being involved in a car accident SPEED<sub>i</sub> = the average driving speed DRINK<sub>i</sub> = the blood alcohol content

- 7. What sign would you expect the coefficient  $\beta_3$  to have? [Justify your answer] Positive, because drinking increases the probability of being involved in an accident, and this effect is more pronounced the faster you are driving.
- 8. What would be the average effect of driving 10mph faster on the probability of having a car accident?

 $\Delta ACC_i = (\beta_2 + \beta_3 DRINK_i) \Delta SPEED_i = 10 \times (\beta_2 + \beta_3 DRINK_i)$ 

For problems 9 and 10, suppose that you are interested on evaluating the effectiveness of certain given policy to foment economic growth in small rural villages. You have data for three variables

 $GROWTH_i$  = the real per capita GDP growth in the village

 $POL_i$  = dummy variable indicating whether the policy was enforced in the *i*th village

 $POP_i$  = the population of the village

**9.** According to the estimated model:

$$GROWTH_i = 0.1 - 0.005 POP_i + 0.012 POL_i$$

what is the average effect of the policy on growth?

$$\hat{\beta}_2 = 0.012$$

**10.** Suppose that you suspect that the effectiveness of the policy depends on the size (population) of the village. What model could you use to capture this effect?

$$\mathsf{GROWTH}_i = \beta_0 + \beta_1 \mathsf{POP}_i + \beta_2 \mathsf{POL}_i + \beta_3 \mathsf{POP}_i \times \mathsf{POL}_i + \varepsilon_i$$

**11.** Consider the data depicted in figure (1). What model could generate a good fit for this data? What can you tell about the coefficients of this model from looking at the data?



$$\begin{split} \log(y_i) &= \beta_0 + \beta_1 \log(x_i) + \varepsilon_i, \qquad -1 < \beta_1 < 0 \\ \text{or} \quad y_i &= \beta_0 + \beta_1 \log(x_i) + \varepsilon_i, \qquad \beta_1 < 0 \end{split}$$

**12.** Consider the data depicted in figure (2). What model could generate a good fit for this data? What can you tell about the coefficients of this model from looking at the data?



Figure (2)

 $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i, \qquad \beta_0 > 0, \ \beta_1 > 0, \ \beta_2 < 0$ 

For problems 13–18, consider the following model for crime, which omits the relevant variable INC<sub>i</sub>:

 $\mathsf{CRIME}_i = \beta_0 + \beta_1 \mathsf{EDU}_i + \varepsilon_i$ 

 $CRIME_i$  = the probability that individual *i* commits a crime  $EDU_i$  = the number of schooling years of the *i*<sup>th</sup> individual  $INC_i$  = the yearly income of the *i*<sup>th</sup> individual

**13.** What sign would you expect for  $\beta_1$ ?

 $\beta_1 < 0$ , because education may improve the legal alternatives of income and the opportunity cost of criminal records, and may have an effect on moral values.

- What sign would you expect for the relationship between EDU<sub>i</sub> and INC<sub>i</sub>?Wealthier people have greater access to education, and a lesser need for income in the short run. Hence I would expect a positive relation.
- **15.** What sign would you expect for the relationship between INC<sub>i</sub> and CRIME<sub>i</sub>?

Wealthier people probably have less reasons to commit crimes, hence I would expect a negative relation.

**16.** What sign would you expect for the bias resulting from the omission of INC<sub>i</sub>?

The bias is equal to the relationship between EDU<sub>i</sub> and INC<sub>i</sub> (positive) times the relationship between CRIME<sub>i</sub> and INC<sub>i</sub> (negative). Hence I would expect a negative bias, i.e.  $\mathbb{E}[\hat{\beta}_1] < \beta_1$ .

For problems 18 and 19, suppose that the output of your linear regression is given by:

|                |            |         |       | [95% Conf. Interval] |
|----------------|------------|---------|-------|----------------------|
| EDU  <br>_cons | <br>0.0053 | -4.9657 | 0.000 | [-0.0364 , -0.0158]  |

**17.** Can you conclude with 95% confidence that each additional year of education reduces (on average) the probability of committing a crime by at least 1.58%? Briefly justify your answer (2-4 sentences).

No. The regression table allows to say with 95% confidence that  $\mathbb{E}[\hat{\beta}_1] \in (-0.0364, -0.0158)$ , and thus  $\mathbb{E}[\hat{\beta}_1] < -0.0158$ . However, we expect a negative bias, i.e.  $\mathbb{E}[\hat{\beta}_1] < \beta_1$ , and thus it could be the case that  $\beta_1 > -0.0158$ .

18. Can you conclude with 95% confidence that each additional year of education reduces (on average) the probability of committing a crime by no more than 3.64%? Briefly justify your answer (2-4 sentences).

Yes. The regression table allows to say with 95% confidence that  $\mathbb{E}\left[\hat{\beta}_{1}\right] \in (-0.0364, -0.0158)$ , and thus  $\mathbb{E}\left[\hat{\beta}_{1}\right] > -0.0364$ . The estimation may be biased, but the bias is negative and hence  $\beta_{1} > \mathbb{E}\left[\hat{\beta}_{1}\right] > -0.0364$ .

For problems 19 and 20, suppose that you are interested on measuring the effect of  $x_1$  over y, and you have data for  $x_1$ ,  $x_2$  and y. Suppose that you estimate the following regressions:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i,$$
  

$$y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i,$$
  

$$x_{2i} = \alpha_0 + \alpha_1 x_{1i} + \varepsilon_i,$$

and you obtain the following results:

|       |          | Std. Err. |         |       |
|-------|----------|-----------|---------|-------|
|       |          | 0.0638    |         |       |
| X2    | -5.0504  | 0.0482    | -104.76 | 0.000 |
|       |          | 0.0638    |         |       |
|       |          |           |         |       |
| Y     | Coef.    | Std. Err. | t       | P> t  |
|       |          | 0.2153    |         |       |
| _cons | 1.6776   | 0.4276    | 3.92    | 0.000 |
|       |          |           |         |       |
| X2    | Coef.    | Std. Err. | t       | P> t  |
| X1    | -0.74201 | 0.04215   | -17.60  | 0.000 |
| _cons | -0.12154 | 0.08372   | -1.45   | 0.148 |
|       |          |           |         |       |

**19.** How can you explain the difference between the estimates for  $\beta_1$  in the first and second regressions?

The first table suggests that  $x_2$  has a significant negative effect on y ( $\beta_2 < 0$ ). The third table suggests that  $x_2$  has a significant negative relation with  $x_1$  ( $\alpha_1 < 0$ ). Hence, when omitting  $x_2$  in the second equation, we would expect a significant positive bias  $\mathbb{E}[\hat{\beta}_1] = \beta_1 + \alpha_1\beta_2 > \beta_1$ 

20. Which of the two estimates do you think is more reliable? [justify your answer]

The previous answer suggests that  $x_2$  is a relevant variable, and excluding it would generate significant bias on the estimation of  $\beta_1$ . Hence the first regression appears to be more reliable.