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Motivation

• We consider linear models of the form:

yi = β0 + β1xi + εi

• We compute estimates β̂1 to guide choices based on:

∆yi = β̂1∆xi

• For this information to be useful it is important that β̂1 ≈ β1

• Under the classical assumptions we can guarantee:

• Unbiasedness E
[
β̂1

]
= β1

• Consistency β̂1 −−→
p
β1



Endogeneity

• One of the crucial assumptions is orthogonality

• xi is exogenous when it is uncorrelated with the error term:

E [ xiεi ] = 0

Otherwise it is endogenous

• Stronger notions of exogeneity require:

• ε to be independent from x

• or conditional mean independence E [ ε|x ] = 0

• Exogeneity guarantees that the things that are not accounted for
(εi), do not interfere with the estimation of β1



Why doe we care?

• Orthogonality is the most important and delicate assumption

• Failures of other assumptions can be tested (to some degree)

• Data from a model with a high degree of endogeneity can look
completely normal

• Endogeneity can only be established/assumed through common
sense/theory

• If other assumptions fail, we can still estimate β1 consistently, and
we can make inference with minor adjustments

• Endogeneity does not allow to estimate β1 consistently

• If there is strong endogeneity bias, our estimated models can be
poor descriptions of reality



Endogeneity bias

• Recall (see slides 3) that we can write:

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

= β1 +

∑
(xi − x̄)(εi − ε̄)∑
(xi − x̄)2

• Which implies that:

E
[
β̂1

]
= β1 + E

[ ∑
(xi − x̄)(εi − ε̄)∑
(xi − x̄)2

]
= 0

• And β̂1 is an unbiased estimator of β1 only if:

E

[ ∑
(xi − x̄)(εi − ε̄)∑
(xi − x̄)2

]
= 0



Example: correlation between x and ε
Estimated model
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R2 = 0.63



Example: correlation between x and ε
The real problem

• We could define ηi = εi + 0.6xi and rewrite the model as:

yi = 6 + 0.3xi + εi

= 6 + 0.3xi + (ηi − 0.6xi) = 6− 0.3xi + ηi

• Notice that ηi ∼ N(0, 1) and E [ xiηi ] = 0

• All classical assumptions are satisfied!

• Why is endogeneity so important then?

• xi could be police officers, yi could be crime rate and εi could be

demographics

• A policy that changes xi may have no effect on εi

• Endogeneity is important when we can influence xi but not εi
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Omitted variables

• The most common source of endogeneity is omitted variables

• One of the reason for having an error term εi , is because we
cannot account for all determinants of yi

• For our estimates to be consistent, the effect of xi must not
depend on those things that we omit

• Suppose data comes from (with all classical assumptions satisfied):

yi = β0 + β1x1i + β2x2i + ηi

• And instead we estimate:

yi = β0 + β1x1i + εi

• We omit x2 (often because we cannot observe it)



Omitted variable bias

• After some algebra:

E
[
β̂1

]
= β1 + β2E

[ ∑
(x1i − x̄1)(x2i − x̄2)
∑
(x1i − x̄1)2

]

+
✘
✘
✘
✘
✘
✘
✘
✘

✘
✘
✘✿
0

E

[ ∑
(x1i − x̄1)(ηi − η̄)
∑
(x1i − x̄1)2

]

= β1 + β2E

[ ∑
(x1i − x̄1)(x2i − x̄2)
∑
(x1i − x̄1)2

]

• The term in the expectation is the OLS estimator of α1 in the model:

x2i = α0 + α1x1i + ϕi

• Therefore we have that:

E
[
β̂1

]
= β1 + β2E [ α̂1 ] = β1 + β2α1

︸ ︷︷ ︸

bias

• The OLS estimator of β1 will be consistent only if there is no bias, i.e.

• If the omitted variable has no linear relation with yi (β2 = 0)

• Or if the omitted variable has no linear relation with xi (α1 = 0)



Example: the returns of schooling
Omitted variable

• Many people are interested in estimating the effect of additional
years of schooling (EDU) on earnings (WAGE)

• Typically, people use models of the form

WAGEi = β0 + β1 EDUi + γxi + εi

where xi represents a vector of control variables (age, gender,
parent’s wealth, parent’s education, . . . )

• This usually involve some endogeneity because of unobserved
characteristics such as innate talents or innate productivity (SKILL)



Example: the returns of schooling
Skill and education

• One would expect that more productive people have lower costs
and expect higher returns from schooling

• Hence more productive people are prone to stay in school longer

• We would expect a positive relationship between EDU and SKILL,
i.e. α1 > 0 in the model

EDUi = α0 + α1 SKILLi + γxi + εi



Example: the returns of schooling
Skill and earnings

• One would expect that more productive people have higher
earnings controlling for other factors

• We would expect a positive relationship between WAGE and
SKILL, i.e. β2 > 0 in the model

WAGEi = β0 + β1 EDUi + β2 SKILLi + γxi + εi



Example: the returns of schooling
Omitted variable bias

• From the previous analysis, if we estimate the incomplete model

WAGEi = β0 + β1 EDUi + γxi + εi

• We should expect a positive bias:

E
[
β̂1

]
= β1 + α1β2 > β1

• That is, we would overestimate the effect of education

• This happens because it may be the case that people with more
years of schooling would have higher wages, even if they had’t gone
to school longer, just because they are more productive

• Since innate skills are not affected by schooling, the direct of β1
can result in poor policy recommendations



Example: smoking during pregnancy
Omitted variable

• It is now accepted that smoking during pregnancy (SMOKE) can
result in low weight of the baby (WEIGHT)

• You can often find a warning in cigarette packages, but establishing
this fact took many years of research

• One could simply use a model

WEIGHTi = β0 + β1 SMOKEi + γxi + εi

• There could be unobserved characteristics of the mother, that may
affect WEIGHT and may be correlated with the decision to smoke

• We will consider the concern of the mother about her and her
baby’s health (HEALTH)



Example: smoking during pregnancy
Omitted variable bias

• Women with high values of HEALTH, are prone to not smoke, or
to stop smoking when they learn they are pregnant.

• Hence we could expect a negative relation between HEALTH and
SMOKE, i.e. α1 < 0 in:

SMOKEi = α0 + α1 HEALTHi + γxi + εi

• High valued of health might imply that the mother is healthy, and
takes a number of measures to ensure the health of the baby

• Hence we may expect a positive relation between HEALTH and
WEIGHT, i.e. β2 > 0 in:

WEIGHTi = β0 + β1 SMOKEi + β2 HEALTHi + γxi + εi



Example: smoking during pregnancy
Omitted variable bias

• From the previous analysis, if we estimate:

WEIGHTi = β0 + β1 SMOKEi + γxi + εi

without including HEALTH, we should expect a downward bias:

E
[
β̂1

]
= β1 + α1β2 < β1

• People who smoke tend to have other unhealthy habits

• It is hard to tell whether babies of smokers weight less because or
smoking or because of something else

• This sort of concern may prevent the FDA from regulating the
tobacco industry



Simultaneous equations

• Many Economic models are based on notions of equilibrium, that relate

variables with more than one equation

• Suppose that data is generated according to:

y1i = β0 + β1y2i + γxi + εi

y2i = α0 + α1y1i + θzi + ηi

• Notice that a change of εi leads to an increase ∆y1i , which in turns leads

to an increase ∆y2i

• Hence εi and y2i are correlated!

• This is where the distinction endogeneity vs. exogeneity comes from:

• We think of x, ε an η as exogenous variables (determined first)

• And of y1i and y2i as endogenous variables (determined second)



Example: market equilibrium
endogenous variables

• The quantity demanded (D) and the quantity supplied (S) depend
on the market price as well as on other factors:

Di = β0 + β1Pi + γxi + εi

Si = α0 + α1Pi + θzi + ηi

• The price is determined in equilibrium as to clear the markets:

Di = Si

• Three equations and three “endogenous” variables D, S and P



Example: market equilibrium
elasticities

• Policy recommendations (eg. optimal prices or taxes) may depend
on the elasticity of demand β1 and the elasticity of supply α1

• We could try yo estimate β1 using OLS for the regression

Di = β0 + β1Pi + γxi + εi

• But the law of demand (α1 > 0) suggests that E [ εiPi ] > 0

• Which would result in biased estimates

E
[
β̂1

]
= β1 +

C [ Pi , εi ]

V [ Pi ]
> β1



Example: market equilibrium
changes in η and ε lead to changes in P and Q

P

Q

D = β0 + β1P + γx+ ε
′

S = α0 + α1P + θx+ η
′

D = β0 + β1P + γx+ ε

S = α0 + α1P + θx+ η

b

D′′i = S
′′

i

P′′i

bP′i
bPi



Example: market equilibrium
estimated model
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Q
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Q̂ = 22.00− 3.19 P



Reduced form

• One form of dealing with simultaneous equations is to identify which

variables are endogenous

• Then one can simply include the exogenous variables from all equations

as regressors

• Instead of estimating:

y1i = β0 + β1y2i + γxi + εi

y2i = α0 + α1y2i + θzi + ηi

• One could estimate the reduced form model:

y1i = β0 + γxi + λzi + εi

y2i = β0 + θxi + θzi + ηi

• With this approach is we cannot estimate β1 nor α1!



Example: demand and supply revisited

• We have three endogenous variables S, D and P

• We could simply estimate the reduced form equations:

Si = Di = β0 + γxi + λzi + εi

Pi = π0 + θxi + θzi + ηi

• This could tell us how different exogenous variables in x and z
affect the market outcome

• But we cannot recover the most important structural parameters:
β1 and α1 which describe the demand and supply curves



Example: police surveillance

• Police presence/surveillance (COPS) can potentially reduce crime
rates (CRIME)

• One could measure this effect with a simple model:

CRIMEi = β0 + β1 COPSi + γxi + εi

• However COPS may be endogenous since police departments
distribute target their resources to address problematic areas

• One may expect a significant coefficient α1 in:

COPSi = α0 + α1 CRIMEi + θzi + ηi

• Simultaneity makes it hard to identify β1



Example: welfare and political stability

• Civil wars are still common in present days.

• Understainding which factors affect political stability, may help to
prevent them.

• One may think that an important factor in predicting conflicts
(WAR), is the state of the economy (GDP).

• In prosperous times, people are less likely to be discontent or
antagonize each other.

• Estimating the effect of GDP on WAR may be hard, because there
may be backward causality

• Civil wars have devastating effects for the economy

• Instability makes a country less attractive for investors

• Hence we can expect that WAR also affects GDP



Selection bias

• Suppose we want to estimate the effect of a treatment denoted by a

dummy variable d :

yi = β0 + β1di + εi

• Notice that:

E [ yi |di = 1 ] = β0 + β1 +E [ εi |di = 1 ]

E [ yi |di = 0 ] = β0 +E [ εi |di = 0 ]

• Therefore

E
[
β̂1

]
= E [ yi |di = 1 ]−E [ yi |di = 0 ]

= β1 +
(

E [ εi |di = 1 ]−E [ εi |di = 0 ]
)

• We obtain consistent estimates only if E [ εi |di = 1 ] = E [ εi |di = 0 ]

• That is, if the selection criteria for the treatment is orthogonal to ε



Example: the returns of military service

• It is important to understand what are the long-term consequences of

military service (MS) for people who will not pursue military careers

• In particular one could be concerned about the effect on income

(WAGE)

WAGEi = β0 + β1 MSi + β2 MSi · AGEi + β3 MSi · AGE
2
i + γxi + εi

• A potential problem is that the choice to participate in voluntary service

is endogenous

• Candidates with less attractive outside options have lower opportunity

cost and are more likely to participate

• This same candidates are likely to have higher wages caeteris paribus

• Hence it is likely that:

E [ εi |MSi = 1 ] 6= E [ εi |MSi = 0 ]



Example: program evaluation

• It is important to assess the effectiveness of different governmental
program

• To do this, one could try to compare outcomes of regions in which
the program is implemented, with the outcomes of regions where it
is not

• A potential problem is that the choice of where to implement the
program is endogenous

• Governments are likely to implement programs (first?) in regions
where they are expected to be more effective

• The selection criteria may thus be correlated with the residuals



Measurement error

• The measurement of economic activity may be susceptible of
measurement error

• Consider the model

yi = β0 + β1xi + εi

• Suppose that instead of observing x , we observe x∗ = x + µ

• Hence the model that we actually estimate is:

yi = β0 + βix
∗

i + ηi

ηi = εi − β1µi

• In many cases, it is sensible to assume that the measurement error
is correlated with the measured variable



Example: health and wealth

• Wealthier people tend to be healthier

• Better nutrition, better medial services . . .

• Wealth data is often self reported

• Self-reports of wealth usually carry some measurement error

• Most people don’t know the exact value of their assets and income

• Some people may want to distort information for privacy concerns

• Both effects tend to be higher for richer people

• Hence we may have E [ xiµi ] < 0
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The problem

• We wish to estimate the effect of x on y , namely β1

• The problem with endogeneity is that:

We cannot disentangle the variation of x from variation of
other factors (ε) which may also affect y

• For example:

• If we only observe prices and quantities, we cannot tell whether

increases in quantities are due to increases in prices or to increases

in demand

• If we only observe earnings and years of schooling, we do not know

if high earnings are due to education or skill



Natural experiments

• If we could observe variations of x which are independent from ε, we

could then estimate β1

• This is exactly what happens in controlled experiments in which the

researcher varies x keeping everything else constant

• Controlled experiments are rarely possible in realistic economic scenarios

• Laboratory experiments in Economics are often questioned for lack of

external validity

• An alternative is to look for natural experiments which affect x but

nothing else

• The idea of natural experiments is materialized in instrumental variables



Instrumental variables

• An instrumental variable (IV) is a variable that is related to x but is

otherwise independent from y

• It affects y but only through x

• In particular it is independent (orthogonal) to ε

• An example of an intrumental variable are the manipulations of a

researcher in an experimental setting

• Instead of considering all the variation of x , focus on the variation

explained by z

• This variation is exogenous!

• If this variation is large enough, we can use it to identify β1

• In that sense IVs can serve as instruments to identify the effect of x on y



Example: market equilibrium
demand shifters

Suppose a variable x1 affects demand but not supply

Then we can observe changes in P which are independent from η

P

Q

S = α0 + α1P + θz + η

D = β0 + β1P+ β2x1 + γx+ ε

D = β0 + β1P+ β2x
′

1 + γx+ ε

b

b

b

b

b



Example: market equilibrium
supply shifters

Suppose a variable z1 affects supply but not demand

Then we can observe changes in P which are independent from ε

P

Q

S = α0 + α1P + α2z1 + θz+ η

S = α0 + α1P + α2z
′

1 + θz+ η

D = β0 + β1Pγx+ ε

b

b

b

b

b



Example: market equilibrium
demand and supply shifters

Demand Supply

Population Number of competitors

Income Technological shocks

Preferences (ads,fads) Prices of inputs

Expectations Expectations

Prices of substitutes/complements Prices of alternative goods



Two stage ordinary least squares
Setup

• Suppose that you want to estimate:

yi = β0 + β1xi + εi

• However you are afraid that x may be endogenous

• To fix this problem, you use z as an instrument

• z should be related to x and independent from ε

• Instead of considering all the variation in x we can focus by the
variation of x which can be explained by z

• We do this using two stage ordinary least squares (2SOLS)



Two stage ordinary least squares
First stage

• To capture the variation of x which can be explained by z , consider
the model

xi = α0 + α1zi + ηi

• The first step of 2SOLS is to run regular OLS on this model to
obtain estimates α̂0 and α̂1

• We then use these estimates to compute predicted values:

x̂i = α̂0 + α̂1zi

which are independent from εi !!



Two stage ordinary least squares
Second stage

• The predictions x̂i contain all the variation of x which can be
explained by z

• Assuming that η and z are exogenous, then so is x̂

• We can use x̂ to estimate the effect of x over y by running OLS on

yi = β0 + β1x̂i + ϕi

• The estimators obtained in the second stage are the IV estimators
of β0 and β1

• They are often denoted by β̂IV0 and β̂IV1



Example: market equilibrium
2SOLS for demand

• Suppose that you want to estimate demand

• You need a supply shifter z1 (e.g. price of inputs)

• On the first stage you would use OLS to estimate:

Pi = δ0 + δ1z1i + ϕi

• Using your estimates you would construct predicted values:

P̂i = δ̂0 + δ̂1z1i

• These predictions capture variations in price which are independent
from changes in demand

• The IV estimates for the demand function will be the OLS
estimates for the model:

Di = β0 + β1P̂i + γxi + εi



Valid instruments

• Which variables can serve as instruments?

• A first obvious requirement is that it must be something which can
be measured (data should be available)

• A good instrument should explain some of the variation of x

• The slope coefficient in the first stage model should be significant

• The R2 coefficient should be high enough!

• A good instrument should be exogenous (orthogonal to ε)

• Unfortunately, endogeneity cannot be tested in general (tomorrow
we will discuss an exception)

• The endogeneity of the instruments has to be established via
common sense/theory



Examples of instrumental variables

Response Regressor Eondogeneity Instruments

earnings schooling omitted

quarter of birth

school construction

proximity to college

newborn weight smoking omitted
random assignement

state taxes

demand price simultaneity supply shifters

supply price simultaneity demand shifters

crime police surveillance simultaneity
electoral cycles

Papal trajectory

conflict GDP simultaneity rainfall

labor supply fertility simultaneity gender composition of children

earnings military service selection draft lottery
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