Beliefs, expected utility and best responses

Watson §4 pages 38-40 \& §6 pages 50-52

Bruno Salcedo

The Pennsylvania State University
Econ 402

Summer 2012

Example: uggs or rain boots

Rational choice under uncertainty

- Emma would like to wear her ugg boots today but she is concerned that it might rain
- If it does rain she would prefer to wear her rain boots
- The problem is that she is uncertain about whether it is going to rain
- She believes that it is going to rain with probability $p \in(0,1)$

Example: uggs or rain boots

Expected utility

- Emma's expected utility from wearing her ugg boots is:

$$
U(\operatorname{Ugg} \text { boots, } p)=10(1-p)-5 p=10-15 p
$$

- Emma's expected utility from wearing her rain boots is:

$$
U(\text { Rain boots, } p)=4(1-p)+6 p=4+2 p
$$

- Emma will choose to wear her ugg boots if and only if:

$$
U(\mathrm{Ugg} \text { boots, } p) \geq U(\text { Rain boots, } p) \quad \Leftrightarrow \quad p \leq \frac{6}{17} \approx 35 \%
$$

Rational choice under uncertainty

- Uncertainty means lack of information
- We say that a player is uncertain about an event if he doesn't know whether it is true or not
- We use the word "beliefs" to mean probability functions that represent the likelihood of each possibility
- We assume that players always maximize their expected utility given their beliefs

Beliefs

- In a strategic form game, since choices are independent, each player is uncertain about the strategies chosen by his opponents

Definition

Given a strategic form game, a belief for player $i \in I$ is a probability distribution θ_{-i} over his/her opponent's strategy sets

- We interpret $\theta_{-i}\left(s_{-i}\right)$ as a measure of the likelihood that player i assigns to his/her opponents choices corresponding to s_{-i}
- When S_{-i} is finite and has N elements, then a belief for player i is just a vector consisting of N numbers between 0 and 1 that add up to 1 .

Example: Battle of the sexes

Beliefs

	Football	Opera
Football	5,1	0,0
Opera	0,0	1,5

- A belief for Mike is a pair of numbers $\left(\theta_{N}(F), \theta_{N}(O)\right)$ between 0 and 1 such that $\theta_{N}(F)+\theta_{N}(O)=1$
- We simplify the notation by using $p=\theta_{N}(F)$ and $(1-p)=\theta_{N}(O)$
- p is the probability that Mike assigns to Nancy going to the football game and $(1-p)$ is the probability that Mike assigns to Nancy going to the Opera

Expected utility

- Given i's beliefs θ_{-i} about his/her opponent's behavior we can define his/her expected payoff or expected utility from choosing a strategy s_{i} :

$$
U_{i}\left(s_{i}, \theta_{i}\right)=\mathbb{E}\left[u_{i}\left(s_{i}, s_{-i}\right) \mid \theta_{i}\right]
$$

- For finite games, expected utility is jut the weighted sum of the payoffs that i would get from different choices of his/her opponents weighted by how likely he/she belief that these choices are:

$$
U_{i}\left(s_{i}, \theta_{i}\right)=\sum_{s_{-i} \in S_{-i}} \theta_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right)
$$

Example: Battle of the sexes

Expected utility

- Given his beliefs, Mike's expected utility for going to the football game is:

$$
U_{M}(\text { Football }, p)=5 \cdot p+0 \cdot(1-p)=5 p
$$

- His s expected utility for going to the opera is:

$$
U_{M}(\text { Opera, } p)=0 \cdot p+1 \cdot(1-p)=1-p
$$

Example: Battle of the sexes

Expected utility

- Given her beliefs, Nancy's expected utility for going to the football game is:

$$
U_{N}(\text { Football }, q)=1 \cdot q+0 \cdot(1-q)=q
$$

- His s expected utility for going to the opera is:

$$
U_{N}(\text { Opera }, q)=0 \cdot q+5 \cdot(1-q)=5-5 q
$$

Example: A 4×4 game

Expected utility

	$\begin{gathered} \mathrm{A} \\ {\left[\theta_{2}(A)\right]} \end{gathered}$	$\begin{gathered} \text { B } \\ {\left[\theta_{2}(B)\right]} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ {\left[\theta_{2}(C)\right]} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ {\left[\theta_{2}(D)\right]} \end{gathered}$
a $\left[\theta_{1}(a)\right]$	7, 9	4, 5	6, 4	2, 2
$\mathrm{b}\left[\theta_{1}(b)\right]$	2, 5	5,2	8, 6	9, 8
$\mathrm{c}\left[\theta_{1}(\mathrm{c}) \mathrm{]}\right.$	5, 4	2, 1	1, 3	4, 5
$\mathrm{d}\left[\theta_{1}(\mathrm{~d})\right]$	1, 8	4,7	4, 4	1, 9

$$
\begin{aligned}
U_{1}\left(a, \theta_{2}\right) & =7 \theta_{2}(A)+4 \theta_{2}(B)+6 \theta_{2}(C)+2 \theta_{2}(D) \\
U_{1}\left(c, \theta_{2}\right) & =5 \theta_{2}(A)+2 \theta_{2}(B)+\theta_{2}(C)+4 \theta_{2}(D) \\
U_{2}\left(B, \theta_{1}\right) & =5 \theta_{1}(a)+2 \theta_{1}(b)+\theta_{1}(c)+7 \theta_{1}(d) \\
U_{2}\left(D, \theta_{1}\right) & =2 \theta_{1}(a)+8 \theta_{1}(b)+5 \theta_{1}(c)+9 \theta_{1}(d)
\end{aligned}
$$

Example: Uneven thumbs

Expected utility

	$\begin{gathered} \mathrm{Up} \\ {\left[\theta_{2}(\mathrm{Up})\right]} \end{gathered}$	$\begin{gathered} \text { Down } \\ {\left[\theta_{2}(\mathrm{Up})\right]} \end{gathered}$		$\begin{gathered} \mathrm{Up} \\ {\left[\theta_{2}(\mathrm{Up})\right]} \end{gathered}$	$\begin{gathered} \text { Down } \\ {\left[\theta_{2}(\mathrm{Up})\right]} \end{gathered}$
Up	0, 0, 0	1, -1, 1	Up	1, 1, -1	-1, 1, 1
Down	-1, 1, 1	1, 1, -1	Down	1, -1, 1	0, 0, 0
Up [$\theta_{3}(\mathrm{Up})$]				Down [$\theta_{3}($ Down $\left.)\right]$	

$$
\begin{gathered}
U_{1}\left(\mathrm{Up}, \theta_{-1}\right)=\theta_{2}(\mathrm{Up}) \theta_{3}(\text { Down })+\theta_{2}(\text { Down }) \theta_{3}(\mathrm{Up}) \\
-\theta_{2}(\text { Down }) \theta_{3}(\text { Down })
\end{gathered}
$$

$U_{1}\left(\right.$ Down, $\left.\theta_{-1}\right)=\theta_{2}(\mathrm{Up}) \theta_{3}($ Down $)+\theta_{2}($ Down $) \theta_{3}(\mathrm{Up})$

$$
-\theta_{2}(\mathrm{Up}) \theta_{3}(\mathrm{Up})
$$

Example: Bertrand competition

- Recall our Bertrand example with firms $\{1,2\}$ choosing prices $p, q \in[0,10]$ and payoff functions:

$$
\begin{aligned}
& u_{1}(p, q)=-p^{2}+\left(12+\frac{1}{2} q\right) p-(20+q) \\
& u_{2}(p, q)=-q^{2}+\left(12+\frac{1}{2} p\right) q-(20+p)
\end{aligned}
$$

- Firm 1's expected utility is given by:

$$
\begin{aligned}
U_{1}\left(p, \theta_{1}\right) & =\mathbb{E}\left[\left.-p^{2}+\left(12+\frac{1}{2} q\right) p-(20+q) \right\rvert\, \theta_{1}\right] \\
& =-p^{2}+\left(12+\frac{1}{2} \bar{q}\right) p-(20+\bar{q})
\end{aligned}
$$

where $\bar{q}=\mathbb{E}\left[q \mid \theta_{2}\right]$

Best responses

- Recall that out notion of rationality assumes that players are expected utility maximizers
- Given his/her beliefs, a player should choose a strategy s_{i} that maximizes his/her expected utility
- We call such actions best responses

Definition

A strategy $s_{i} \in S_{i}$ is a best response to a belief θ_{i} if and only if it maximizes i 's expected utility given θ_{-i}, i.e. if and only if:

$$
U_{i}\left(s_{i}, \theta_{-i}\right) \geq U_{i}\left(s_{i}^{\prime}, \theta_{-i}\right)
$$

for every other strategy $s_{i}^{\prime} \in S_{i}$

- We use the symbol $B R_{i}\left(\theta_{-i}\right) \subseteq S_{i}$ to denote the set of strategies for i that are best responses to θ_{i}

Example: Battle of the sexes

- Mancy's expected utility functions in the Battle of the Sexes example are given by:

$$
U_{M}(\text { Football }, p)=5 p \quad U_{M}(\text { Opera }, p)=1-p
$$

- Going to the football game is a best response if and only if:

$$
U_{M}(\text { Football }, p) \geq U_{M}(\text { Opera }, p) \quad \Leftrightarrow \quad p \geq \frac{1}{6}
$$

- Going to the opera game is a best response if and only if:

$$
U_{M}(\text { Football }, p) \leq U_{M}(\text { Opera }, p) \quad \Leftrightarrow \quad p \leq \frac{1}{6}
$$

- Mike is indifferent between going to the opera of to the football game when $p=\frac{1}{6}$

Example: Battle of the sexes

Best responses

Maximizing quadratic functions

Example: Bertrand competition

- In our Bertrand example, firm 1's expected utility is given by:

$$
U_{1}\left(p, \theta_{1}\right)=-p^{2}+\left(12+\frac{1}{2} \bar{q}\right) p-(20+\bar{q})
$$

- As a function of p (taking θ_{1} as a parameter) it is a parabola that opens down and has a unique best response:

$$
p=6+\frac{1}{4} \bar{q}
$$

- See the corresponding lecture notes for further details

Example: Bertrand competition

Best responses

