Solution Concepts 1

Dominance and best responses

Watson §6, pages 51-64

Bruno Salcedo
The Pennsylvania State University

Econ 402

Summer 2012

Best responses and rationality

- The assumption that motivates our predictions is that players are rational, in a game context this means that: players always choose strategies that maximize their expected utility given their beliefs

Prediction

Given a strategic form game, players will only choose strategies that are a best response to some belief about his/her opponent's strategies

- We use the symbol $B R_{i}$ to denote the set of such strategies:

$$
B R_{i}=\left\{s_{i} \in S_{i} \mid \text { there is some } \theta_{-i} \text { such that } s_{i} \in B R_{i}\left(\theta_{-i}\right)\right\}
$$

- The prediction is that every player i will choose a strategy in $B R_{i}$

Example: A 3×2 game

Best responses

	L	R
p	$[1-p]$	

- When one player has only two strategies, we can graph the expected utility of his/her opponents to find the set of best responses
- Player 1's expected utility is given by:

$$
U_{1}(U, p)=6 p \quad U_{1}(M, p)=5-3 p \quad U_{1}(D, p)=3
$$

Example: A 3×2 game

Best responses

Strictly dominated strategies

motivation

- For general games finding the set of best responses is not that straightforward
- We will find such set indirectly by introducing the notion of strictly dominated strategies
- Strictly dominated strategies was originally thought as an interesting concept on its own
- We will use it only because of its relationship with best responses: a strategy is a best response to some belief if and only if it is not strictly dominated

Mixed strategies

- Before defining strict dominance we extend our notion of strategy by allowing players to make random choices

Definition

A mixed strategy for player i is a probability distribution σ_{i} over his/her strategies

- Mathematically, the notions of beliefs and mixed strategies are similar but the interpretation is different
- For example, in a game with two players 1 and 2
- θ_{2} represents 1's beliefs about 2's behavior which might very well be deterministic
- σ_{2} represents 2's behavior which might very well be unknown by 1
- As before, we can compute i 's expected utility for playing according to $\sigma_{i}, U_{i}\left(\sigma_{i}, s_{-i}\right)$ or $U_{i}\left(\sigma_{i}, \theta_{-i}\right)$

Strictly dominated strategies

Definition

We say that a pure strategy s_{i} is strictly dominated by a pure or mixed strategy σ_{i} if playing according σ_{i} generates a strictly higher expected payoff for i than s_{i}, independently of what the other players do. That is, if and only if:

$$
U_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)
$$

for every $s_{-i} \in S_{-i}$.

Example: A 3×2 game

Dominated strategies

	L	R
U	6,3	0,1
	2,1	5,0
	3,2	3,1

- For player $2, R$ is strictly dominated by L because:

$$
\begin{gathered}
u_{2}(U, L)=3>1=u_{2}(U, R) \\
u_{2}(M, L)=1>0=u_{2}(M, R) \\
u_{2}(D, L)=2>1=u_{2}(D, R)
\end{gathered}
$$

Example: A 3×2 game

Dominated strategies

	L	R
U	6,3	0,1
	2,1	5,0

- For player $1, D$ is not strictly dominated U nor by M but it is strictly dominated by $\sigma_{1}=(1 / 3,2 / 3,0)$ because:

$$
\begin{array}{r}
U_{1}\left(\sigma_{1}, L\right)=\frac{1}{3} 6+\frac{2}{3} 2=\frac{10}{3}>3=u_{1}(D, L) \\
U_{1}\left(\sigma_{1}, R\right)=\frac{2}{3} 5=\frac{10}{3}>3=u_{1}(D, R)
\end{array}
$$

Dominance and best responses

Theorem

A strategy s_{i} is a best response for some belief of player i if and only if it is not dominated by any other pure or mixed strategy

- Our first prediction was that rational players always choose best responses
- This theorem allows us to determine the set of best responses by eliminating the strategies that are strictly dominated
- In many cases (almost surely in the exams) it is sufficient to look for strategies that are dominated by pure strategies
- In some few cases, eliminating dominated strategies is sufficient to fully predict the outcome of a game

Example: prisoner's dilemma

dominated strategies

	Keep Silent	Confess
Keep silent	$-1,-1$	$-5,0$
Confess	$0,-5$	$-3,-3$

- In the prisoner's dilemma, keeping silent is strictly dominated by confessing
- We thus can predict that rational players playing the prisoner's dilemma will confess

