Solution Concepts 3

Nash equilibrium in pure strategies

Watson §9-§10, pages 89-100

Bruno Salcedo

The Pennsylvania State University
Econ 402

Summer 2012

Rationalizability vs equilibrium

- By assuming that there is common knowledge of rationality, we have concluded that players will choose rationalizable strategies
- This prediction has two criticisms:
(1) In most cases it is not very informative
(2) It allows players to have erroneous beliefs
- By assuming that players beliefs are correct (i.e. if player 1 has beliefs θ_{2} about 2's behavior then 2 makes choices according to $\sigma_{2}=\theta_{2}$) we obtain different notions of equilibrium
- In this slides we only consider Nash equilibrium in pure strategies

Correct beliefs

- Why would we assume that players have correct beliefs?
(1) Communication.- If players communicate with each other prior to playing the game they might agree to follow some strategies
(2) Learning.- If players interact repeatedly they might learn from experience how to predict their opponents behavior
(3) Adaptation.- If players follow simple adaptive rules, behavior can also converge to something that looks like an equilibrium
4 Institutions.- Institutions/mediators might help to coordinate players expectations
(5) Focal points.- Some rationalizable strategies might be justifiable by simple logical arguments

Nash equilibrium in pure strategies

Communication and self-enforcing agreements

- Suppose that the players gather to discuss and agree on playing according to some strategy profile $s \in S$ specifying a pure strategy for each player (no mixing for now)
- After that, players go different ways ant they choose strategies simultaneously and independently
- Suppose that player i thinks that his/her opponents will not deviate from the agreed strategy profile, i.e. that they will choose the strategies in s_{-i}
- Then i will be willing to choose strategy s_{i} if and only if it is a best response to s_{-i}, i.e. if and only if $s_{i} \in B R_{i}\left(s_{-i}\right)$
- In this case i can not strictly benefit from unilaterally deviating from the intended strategy profile
- If no players have strict incentives to deviate unilaterally then we say that s is a Nash equilibrium in pure strategies

Nash equilibrium in pure strategies

Definition

Given a strategic form game, a Nash equilibrium in pure strategies is a strategy profile $s \in S$ such that no player can strictly gain from deviating unilaterally, i.e. such that:

$$
u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

for every player i and every alternative strategy $s_{i}^{\prime} \in S_{i}$

- Equivalently, a Nash equilibrium is a profile of strategies which are best responses to each other, i.e. a strategy profile $s \in S$ such that $s_{i} \in B R_{i}\left(s_{-i}\right)$ for every player i
- In a two player game (represented by a payoff matrix) a pair of strategies is a Nash equilibrium if player 1 is maximizing his/her payoff along the corresponding column and player 2 is maximizing his/her payoff along the corresponding row

Example: Battle of the Sexes

Nash equilibria

> Football Opera

- To find Nash equilibrium of a finite game one can start by highlighting the best response payoffs for each player
- If a cell in the matrix has all payoffs highlighted then it is a Nash equilibrium

Rationalizability vs Nash equilibrium

- If we assume that:
(1) Players are rational

2 Players are making deterministic choices (no mixed strategies)
(3) Players have correct beliefs about their opponents' behavior (they know what their opponents are going to choose)
then we can predict that they sill play some Nash equilibrium

- Nash equilibria are joint predictions specifying strategies for all players
- Rationalizability makes individual predictions for each player

Theorem

Every strategy in a Nash equilibrium is rationalizable

Theorem

If there is a unique rationalizable strategy for each player, then these strategies conform a Nash equilibrium

Example: A 4×4 game
Best responses

	a	b	c	c
w	$0, \underline{7}$	2,5	$\underline{7}, 0$	0,1
x	5,2	$\underline{3}, \underline{3}$	5,2	0,1
y	$\underline{7}, 0$	2,5	$0, \underline{7}$	0,1
z	$0, \underline{0}$	$0,-2$	$0, \underline{0}$	$\underline{10},-1$

Example: A 4×4 game
Nash equilibrium and rationalizable strategies

Example: classic 2×2 examples

Best responses

	Full	Empty
Full	3,3	$0, \underline{5}$
Empty	$\underline{5}, 0$	$\underline{2}, \underline{2}$

	Continue	Swerve
Continue	0,0	$\underline{5}, \underline{1}$
Swerve	$\underline{1}, \underline{5}$	2,2

	GCS	PS
GCS	$\underline{1}, \underline{1}$	0,0
PS	0,0	$\underline{2}, \underline{2}$

	Press	Don't press
Press	3,1	$\underline{0}, \underline{5}$
Don't press	$\underline{6},-2$	$-1, \underline{-1}$

Example: classic 2×2 examples

Nash and rationalizability

Example: rock paper scissors

Not every game has a Nash equilibrium in pure strategies

	Rock	Paper	Scissors
Rock	0,0	$-1, \underline{1}$	$\underline{1},-1$
Paper	$\underline{1},-1$	0,0	$-1, \underline{1}$
Scissors	$-1, \underline{1}$	$\underline{1},-1$	0,0

Example: Cournot competition

Best responses

- Consider a Cournt duopoly game with two firms 1 and 2 choosing quantities $q_{1}, q_{2} \in[0,50]$, with constant marginal costs $c=10$ and inverse demand function:

$$
P\left(q_{1}, q_{2}\right)=100-q_{1}-q_{2}
$$

- Payoffs are given by:

$$
u_{1}\left(q_{1}, q_{2}\right)=\left(90-q_{2}-q_{1}\right) q_{1} \quad u_{2}\left(q_{1}, q_{2}\right)=\left(90-q_{1}-q_{2}\right) q_{2}
$$

- Best responses to pure strategies are given by:

$$
B R_{1}\left(q_{2}\right)=45-\frac{1}{2} q_{2} \quad B R_{2}\left(q_{1}\right)=45-\frac{1}{2} q_{1}
$$

Example: Cournot competition

Nash equilibria

- A pure strategy Nash equilibrium for this Cournot example is a pair of quantities $\left(q_{1}, q_{2}\right)$ that are mutual best responses, i.e such that:

$$
q_{1}=B R_{1}\left(q_{2}\right) \quad q_{2}=B R_{2}\left(q_{1}\right)
$$

- Using our formula for best responses this is equivalent to:

$$
\begin{aligned}
& q_{1}=45-\frac{1}{2} q_{2} \quad q_{2}=45-\frac{1}{2} q_{1} \\
\Rightarrow & q_{2}=45-\frac{1}{2}\left(45-\frac{1}{2} q_{2}\right)=45-22.5+\frac{1}{4} q_{2}=22.5+\frac{1}{4} q_{2} \\
\Rightarrow & \frac{5}{4} q_{2}=22.5 \quad \Rightarrow \quad q_{2}=\frac{4 \cdot 22.5}{5}=30 \\
\Rightarrow & q_{1}=45-\frac{1}{2} 30=45-15=30
\end{aligned}
$$

- So the game has a unique Nash equilibrium in pure strategies: $(30,30)$
- Recall that this was the unique rationalizable strategy profile

Example: Cournot competition

Nash equilibrium

Example: a continuous two player game

Best responses and Nash equilibrium

Example: location game

Nash equilibrium

	1	2	3	4	5	6	7
1	35, 35	10,60	15, 55	20, 50	25,45	30,40	35, 35
2	60, 10	35, 35	20, 50	25,45	30,40	35,35	40,30
3	55,15	50, 20	35,35	30,40	35,35	40,30	45, 25
4	50,20	45, 25	40,30	35, 35	40,30	45, 25	50,20
5	45,25	40,30	35,35	30,40	35,35	50, 20	55, 15
6	40,30	35,35	30,40	25,45	20,50	35,35	60, 10
7	35, 35	30,40	25,45	20,50	15,55	10,60	35, 35

