Solution Concepts 3 Nash equilibrium in pure strategies Watson §9-§10, pages 89-100

Bruno Salcedo

The Pennsylvania State University

Econ 402

Summer 2012

Rationalizability vs equilibrium

- By assuming that there is common knowledge of rationality, we have concluded that players will choose rationalizable strategies
- This prediction has two criticisms:

1 In most cases it is not very informative

2 It allows players to have erroneous beliefs

- By assuming that players beliefs are correct (i.e. if player 1 has beliefs θ_2 about 2's behavior then 2 makes choices according to $\sigma_2 = \theta_2$) we obtain different notions of equilibrium
- In this slides we only consider Nash equilibrium in pure strategies

Correct beliefs

- Why would we assume that players have correct beliefs?
 - Communication.- If players communicate with each other prior to playing the game they might agree to follow some strategies
 - 2 Learning.- If players interact repeatedly they might learn from experience how to predict their opponents behavior
 - Adaptation.- If players follow simple adaptive rules, behavior can also converge to something that looks like an equilibrium
 - Institutions.- Institutions/mediators might help to coordinate players expectations
 - Focal points. Some rationalizable strategies might be justifiable by simple logical arguments

Nash equilibrium in pure strategies

Communication and self-enforcing agreements

- Suppose that the players gather to discuss and agree on playing according to some strategy profile $s \in S$ specifying a pure strategy for each player (no mixing for now)
- After that, players go different ways ant they choose strategies simultaneously and independently
- Suppose that player *i* thinks that his/her opponents will not deviate from the agreed strategy profile, i.e. that they will choose the strategies in s_{-i}
- Then *i* will be willing to choose strategy s_i if and only if it is a best response to s_{-i} , i.e. if and only if $s_i \in BR_i(s_{-i})$
- In this case *i* can not **strictly** benefit from **unilaterally** deviating from the intended strategy profile
- If no players have strict incentives to deviate **unilaterally** then we say that *s* is a Nash equilibrium in pure strategies

Nash equilibrium in pure strategies

Definition

Given a strategic form game, a Nash equilibrium *in pure strategies* is a strategy profile $s \in S$ such that no player can **strictly** gain from deviating **unilaterally**, i.e. such that:

 $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$

for every player *i* and every alternative strategy $s'_i \in S_i$

- Equivalently, a Nash equilibrium is a profile of strategies which are best responses to each other, i.e. a strategy profile *s* ∈ *S* such that *s_i* ∈ *BR_i*(*s*_{-*i*}) for every player *i*
- In a two player game (represented by a payoff matrix) a pair of strategies is a Nash equilibrium if player 1 is maximizing his/her payoff along the corresponding *column* and player 2 is maximizing his/her payoff along the corresponding *row*

Example: Battle of the Sexes

Nash equilibria

- To find Nash equilibrium of a finite game one can start by highlighting the best response payoffs for each player
- If a cell in the matrix has all payoffs highlighted then it is a Nash equilibrium

Rationalizability vs Nash equilibrium

- If we assume that:
 - Players are rational
 - 2 Players are making deterministic choices (no mixed strategies)
 - Players have correct beliefs about their opponents' behavior (they know what their opponents are going to choose)

then we can predict that they sill play some Nash equilibrium

- Nash equilibria are *joint* predictions specifying strategies for all players
- Rationalizability makes individual predictions for each player

Theorem

Every strategy in a Nash equilibrium is rationalizable

Theorem

If there is a unique rationalizable strategy for each player, then these strategies conform a Nash equilibrium

Example: A 4×4 game

Best responses

	а	b	с	d	
w	0, <u>7</u>	2,5	<u>7</u> , 0	0,1	
x	5,2	<u>3</u> , <u>3</u>	5,2	0,1	
у	<u>7</u> , 0	2,5	0, <u>7</u>	0,1	
Z	0, <u>0</u>	0,-2	0, <u>0</u>	<u>10</u> , -1	

Example: A 4×4 game

Nash equilibrium and rationalizable strategies

Example: classic 2×2 examples

Best responses

Example: classic 2×2 examples

Nash and rationalizability

Example: rock paper scissors

Not every game has a Nash equilibrium in pure strategies

	Rock	Paper	Scissors	
Rock	0,0	-1, <u>1</u>	<u>1</u> , -1	
Paper	<u>1</u> , -1	0,0	-1, <u>1</u>	
Scissors	-1, <u>1</u>	<u>1</u> , -1	0,0	

Example: Cournot competition Best responses

• Consider a Cournt duopoly game with two firms 1 and 2 choosing quantities $q_1, q_2 \in [0, 50]$, with constant marginal costs c = 10 and inverse demand function:

$$P(q_1, q_2) = 100 - q_1 - q_2$$

• Payoffs are given by:

 $u_1(q_1,q_2) = (90 - q_2 - q_1)q_1$ $u_2(q_1,q_2) = (90 - q_1 - q_2)q_2$

Best responses to pure strategies are given by:

$$BR_1(q_2) = 45 - \frac{1}{2}q_2 \qquad BR_2(q_1) = 45 - \frac{1}{2}q_1$$

Example: Cournot competition Nash equilibria

• A pure strategy Nash equilibrium for this Cournot example is a pair of quantities (*q*₁, *q*₂) that are mutual best responses, i.e such that:

$$q_1 = BR_1(q_2)$$
 $q_2 = BR_2(q_1)$

• Using our formula for best responses this is equivalent to:

$$q_{1} = 45 - \frac{1}{2}q_{2} \qquad q_{2} = 45 - \frac{1}{2}q_{1}$$

$$\Rightarrow \quad q_{2} = 45 - \frac{1}{2}\left(45 - \frac{1}{2}q_{2}\right) = 45 - 22.5 + \frac{1}{4}q_{2} = 22.5 + \frac{1}{4}q_{2}$$

$$\Rightarrow \quad \frac{5}{4}q_{2} = 22.5 \qquad \Rightarrow \qquad q_{2} = \frac{4 \cdot 22.5}{5} = 30$$

$$\Rightarrow \quad q_{1} = 45 - \frac{1}{2}30 = 45 - 15 = 30$$

- So the game has a unique Nash equilibrium in pure strategies: (30, 30)
- Recall that this was the unique rationalizable strategy profile

Example: Cournot competition

Nash equilibrium

Example: a continuous two player game

Best responses and Nash equilibrium

Example: location game

Nash equilibrium

	1	2	3	4	5	6	7
1	35,35	10, <u>60</u>	15,55	20, 50	25,45	30, 40	35,35
2	<u>60</u> , 10	35,35	20, <u>50</u>	25,45	30,40	35, 35	40,30
3	55, 15	<u>50</u> , 20	35,35	30, <u>40</u>	35,35	40, 30	45,25
4	50, 20	45,25	<u>40</u> , 30	<u>35</u> , <u>35</u>	<u>40</u> , 30	45, 25	50,20
5	45, 25	40,30	35,35	30, <u>40</u>	35,35	<u>50</u> , 20	55, 15
6	40,30	35,35	30,40	25,45	20, <u>50</u>	35, 35	<u>60</u> , 10
7	35,35	30,40	25,45	20, 50	15,55	10, <u>60</u>	35,35