Solution Concepts 4 Nash equilibrium in mixed strategies Watson §11, pages 123-128

Bruno Salcedo

The Pennsylvania State University

Econ 402

Summer 2012

Mixing strategies

- In a strictly competitive situation players have incentives to prevent their opponents from predicting their choices
 - Examples: rock paper scissors, military tactics, poker
- One way of remaining "unpredictable" is to randomize your choices

Definition

A mixed strategy for player *i* is a probability distribution σ_i over his/her strategies

- See the slides on dominance and best responses (S4) or section §5 in the textbook for more details.
- We don't think of actual explicit randomization (eg rolling a dice to make a choice) but rather implicit randomization (eg basing your choices on "feelings" or unpredictable introspective processes)
- We use the adjective "pure" to talk about non-mixed strategies. A pure strategy is equivalent to the mixed strategy that plays it for sure

Nash equilibrium in mixed strategies

• When players randomize, we can compute expected utility:

$$U_{i}(\sigma_{i}, \sigma_{-i}) = \mathbb{E} \left[u_{i}(s_{i}, s_{-i}) \middle| \sigma_{i}, \sigma_{-i} \right]$$

= $U_{i}(\sigma_{i}, \sigma_{-i}) = \sum_{s_{i} \in S_{i}} \sum_{s_{-i} \in S_{-i}} u_{i}(s_{i}, s_{-i})$ (for finite games)

• The notions of rationality, rationalizability, best responses and Nash equilibrium remain unchanged

Definition

Given a strategic form game, a Nash equilibrium is a (pure or mixed) strategy profile σ such that no player can **strictly** gain from deviating **unilaterally**, i.e. such that:

$$U_i(\sigma_i, \sigma_{-i}) \ge U_i(\sigma'_i, \sigma_{-i})$$

for every player *i* and every alternative strategy σ'_i

Example: Rock Paper Scissors

- Claim: both players randomizing according to (1/3, 1/3, 1/3) is a Nash equilibrium
- If a player uses this strategy his/her opponent's expected payoff *for any strategy* is 0
- Thus there are no incentives to deviate unilaterally

Computing equilibria in mixed strategies

Theorem

If a mixed strategy σ_i is a best response to σ_{-i} then so are all the strategies that are mixed with positive probability

- This means that, if a player is willing to randomize, it must be the case that he/she is *indifferent* between all the strategies over which he is randomizing
- To find Nash equilibria in mixed strategies we do the following:
 - "Guess" the pure strategies that will be mixed (start by eliminating strategies that are not rationalizable)
 - ❷ For each player *i*, look for a mixed strategy for −*i* that makes *i* be indifferent between the strategies that he/she is mixing

Row's expected utility

• Given *p*, row's expected utility for each pure strategy is:

$$U_1(U,p) = 3p + 5(1-p) = 5 - 2p$$
$$U_1(D,p) = 1p + 6(1-p) = 6 - 5p$$

• Row is thus indifferent between U and D if and only if:

$$U_1(U,p) = U_1(D,p) \quad \Leftrightarrow \quad 5 - 2p = 6 - 5p \quad \Leftrightarrow \quad p = \frac{1}{3}$$

-

Row's best responses

• Given q, Col's expected utility for each pure strategy is:

$$U_2(L,q) = 3q + 2(1-q) = 2-q$$
$$U_2(R,q) = 8q + 1(1-q) = 7q - 1$$

• Col is thus indifferent between L and R if and only if:

$$U_2(L,q) = U_2(R,q) \quad \Leftrightarrow \quad 2-q = 7q-1 \quad \Leftrightarrow \quad q = \frac{1}{6}$$

• We then have found a mixed equilibrium in pure strategies:

$$\sigma_1 = \left(\frac{1}{6}, \frac{5}{6}\right)$$
$$\sigma_2 = \left(\frac{1}{3}, \frac{2}{3}\right)$$

Why bother making opponent be indifferent?

- It might not seem intuitive that a player randomizes with the exact probabilities that make his/her opponent be indifferent.
- Recall: *making an opponent indifferent is not the intention of the player*, the player simply wants to maximize his expected utility
- The definition and motivation of Nash equilibrium is only that players want to maximize their expected utility, and their beliefs are in equilibrium (there are no profitable unilateral deviations)
- The fact that the corresponding strategies must make players indifferent is a result

- Using iterated dominance we end up with a 2 × 2 game
- Let *p* be the probability of *b* and 1 − *p* the probability of *c*, for indifference we must have:

$$9p + (1-p) = p + 4(1-p) \quad \Leftrightarrow \quad p = \frac{3}{11}$$

• Let *q* be the probability of *x* and 1 - q the probability of *z*, for indifference we must have:

$$3q + 8(1-q) = 7q + 0(1-q) \iff q = \frac{2}{3}$$

Existence of equilibrium

Theorem

Every finite strategic form game has at least one Nash equilibrium

Theorem

Generically, finite strategic form games have an odd number of Nash equilibria

Existence of equilibria

