Solution Concepts 4
 Nash equilibrium in mixed strategies

Watson §11, pages 123-128

Bruno Salcedo

The Pennsylvania State University
Econ 402

Summer 2012

Mixing strategies

- In a strictly competitive situation players have incentives to prevent their opponents from predicting their choices
- Examples: rock paper scissors, military tactics, poker
- One way of remaining "unpredictable" is to randomize your choices

Definition

A mixed strategy for player i is a probability distribution σ_{i} over his/her strategies

- See the slides on dominance and best responses (S4) or section $\S 5$ in the textbook for more details.
- We don't think of actual explicit randomization (eg rolling a dice to make a choice) but rather implicit randomization (eg basing your choices on "feelings" or unpredictable introspective processes)
- We use the adjective "pure" to talk about non-mixed strategies. A pure strategy is equivalent to the mixed strategy that plays it for sure

Nash equilibrium in mixed strategies

- When players randomize, we can compute expected utility:

$$
\begin{aligned}
U_{i}\left(\sigma_{i}, \sigma_{-i}\right) & =\mathbb{E}\left[u_{i}\left(s_{i}, s_{-i}\right) \mid \sigma_{i}, \sigma_{-i}\right] \\
& =U_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{s_{i} \in S_{i}} \sum_{s_{-i} \in S_{-i}} u_{i}\left(s_{i}, s_{-i}\right) \quad \text { (for finite games) }
\end{aligned}
$$

- The notions of rationality, rationalizability, best responses and Nash equilibrium remain unchanged

Definition

Given a strategic form game, a Nash equilibrium is a (pure or mixed) strategy profile σ such that no player can strictly gain from deviating unilaterally, i.e. such that:

$$
U_{i}\left(\sigma_{i}, \sigma_{-i}\right) \geq U_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)
$$

for every player i and every alternative strategy σ_{i}^{\prime}

Example: Rock Paper Scissors

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

- Claim: both players randomizing according to $(1 / 3,1 / 3,1 / 3)$ is a Nash equilibrium
- If a player uses this strategy his/her opponent's expected payoff for any strategy is 0
- Thus there are no incentives to deviate unilaterally

Computing equilibria in mixed strategies

Theorem

If a mixed strategy σ_{i} is a best response to σ_{-i} then so are all the strategies that are mixed with positive probability

- This means that, if a player is willing to randomize, it must be the case that he/she is indifferent between all the strategies over which he is randomizing
- To find Nash equilibria in mixed strategies we do the following:
(1) "Guess" the pure strategies that will be mixed (start by eliminating strategies that are not rationalizable)

2. For each player i, look for a mixed strategy for $-i$ that makes i be indifferent between the strategies that he/she is mixing

Example: A 2×2 game

Row's expected utility

Col

	$\begin{gathered} \mathrm{L} \\ {[p]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[1-p]} \end{gathered}$
Row U [q]	3, 3	5, 8
D [1-q]	1,2	6, 1

- Given p, row's expected utility for each pure strategy is:

$$
\begin{aligned}
& U_{1}(U, p)=3 p+5(1-p)=5-2 p \\
& U_{1}(D, p)=1 p+6(1-p)=6-5 p
\end{aligned}
$$

- Row is thus indifferent between U and D if and only if:

$$
U_{1}(U, p)=U_{1}(D, p) \quad \Leftrightarrow \quad 5-2 p=6-5 p \quad \Leftrightarrow \quad p=\frac{1}{3}
$$

Example: A 2×2 game

Row's best responses

Example: A 2×2 game

Col

- Given q, Col's expected utility for each pure strategy is:

$$
\begin{aligned}
& U_{2}(L, q)=3 q+2(1-q)=2-q \\
& U_{2}(R, q)=8 q+1(1-q)=7 q-1
\end{aligned}
$$

- Col is thus indifferent between L and R if and only if:

$$
U_{2}(L, q)=U_{2}(R, q) \quad \Leftrightarrow \quad 2-q=7 q-1 \quad \Leftrightarrow \quad q=\frac{1}{6}
$$

Example: A 2×2 game

- We then have found a mixed equilibrium in pure strategies:

$$
\begin{aligned}
& \sigma_{1}=\left(\frac{1}{6}, \frac{5}{6}\right) \\
& \sigma_{2}=\left(\frac{1}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Why bother making opponent be indifferent?

- It might not seem intuitive that a player randomizes with the exact probabilities that make his/her opponent be indifferent.
- Recall: making an opponent indifferent is not the intention of the player, the player simply wants to maximize his expected utility
- The definition and motivation of Nash equilibrium is only that players want to maximize their expected utility, and their beliefs are in equilibrium (there are no profitable unilateral deviations)
- The fact that the corresponding strategies must make players indifferent is a result

- Using iterated dominance we end up with a 2×2 game
- Let p be the probability of b and $1-p$ the probability of c, for indifference we must have:

$$
9 p+(1-p)=p+4(1-p) \quad \Leftrightarrow \quad p=\frac{3}{11}
$$

- Let q be the probability of x and $1-q$ the probability of z, for indifference we must have:

$$
3 q+8(1-q)=7 q+0(1-q) \quad \Leftrightarrow \quad q=\frac{2}{3}
$$

Existence of equilibrium

Theorem

Every finite strategic form game has at least one Nash equilibrium

Theorem

Generically, finite strategic form games have an odd number of Nash equilibria

Example: A 2×2 game

Existence of equilibria

