Extensive Form Games

Bruno Salcedo

Reading assignments: Watson, Ch. 2 & 14

Cornell University · ECON4020 · Game Theory · Spring 2017

extensive form games

- Strategic environment
 - Agents make choices
 - Each agent's preferences may depend on the choices of others
- A extensive form game explicitly specifies
 - 1. Agents involved
 - 2. Different choices each agent might face
 - 3. Information available to each agent at each moment
 - 4. Sequential/temporal structure of choices
 - 5. Preferences over possible outcomes

example – entrance deterrence

- Market with a single *incumbent* firm
- Potential entrant considers entering

- If the entrant stays out, the incumbent makes \$10M in profits
- If the entrant enters, then the incumbent chooses between
 - Fighting the entrant with aggressive policies
 - Accommodating the entrant and sharing the monopolistic profits
- If the incumbent accommodates, each makes profits of \$5M
- If the incumbent fights, the entrant suffers losses of -\$1M but the incumbent's profits shrink to \$2M

example – entrance deterrence

A tree is a set of nodes connected by branches such that

- 1. A unique node —the root— has no incoming branches
- 2. Every other node has a *unique* incoming branch
- 3. Every node can be reached starting from the root

example

things that are **not** trees

terminal and decision nodes

- Trees model dynamic structures
- Nodes represent moments or states of the game
- Branches represent transitions between states via moves or choices
- Two types of nodes

Terminal	Decision	
No outgoing branches	At least one outgoing branch	
Final states of the game	Initial and intermediate states	
No more choices to be made	Some agent is to make a move/choice	

example

games with perfect information

A perfect information extensive form game consists of:

- 1. A set of players
- 2. A game tree representing the dynamic structure
- 3. A specification of who moves at each decision node
- 4. A payoff for each player at each terminal node

example – performance bonuses

- Anna owns a firm that employs Bob
- Bob chooses to *work* diligently or *shirk*
- Ana's profits depend on Bob's effort
 - If Bob works, the firm does well and Anna makes \$500
 - If Bob shirks, the firm does poorly and Anna only makes 200
- Bob cares about his salary and his effort
 - Working requires costly effort worth \$100
 - He receives a fixed salary of \$100 independently of his effort
- Before production takes place, Anna has the option of promise Bob a \$150 productivity bonus contingent on good results

example – performance bonuses

	Ana				
	Bonus		No bonus		
	Bob		Bob		
	Work	Shirk	Work	Shirk	
+Profits	+\$500	+\$200	+\$500	+\$200	
–Wage	-\$100	-\$100	-\$100	-\$100	
–Bonus	-\$150				
Ana's payoff	\$ 250	\$100	\$400	\$100	
+Wage	+\$100	+\$100	+\$100	+\$100	
-Effort	-\$100	-	-\$100	_	
+Bonus	+\$150	_	_		
Bob's payoff	\$150	\$100	\$0	\$100	

tic-tac-toe

- Tic-tac-toe is a board game played on a 3 by 3 grid
- Two players, Ana and Bob, alternate taking turns
- The player taking a turn marks one free space with his/her mark
- A player wins the game if he/she gets three marks lined up
- If the board is full and there is no winner, the game ends a draw
- The winner's payoff is +1, the loser's payoff is −1, and both players get 0 in case of a draw

tic-tac-toe

tic-tac-toe

information

- Until now, players always know everything that has happened in the past
- Games with this property are called perfect information games
- In many situations players choose without knowing the state of the game
- Some examples:
 - Make a bet without knowing your opponent's hand
 - Choose which products to develop without knowing your competitor's plans
 - Choose a price without knowing your demand curve

weather through a window

- Through the window you can see precipitations, but not temperature
- For instance, if it is raining
 - You can tell it is raining
 - You cannot tell whether it is nice or cold

example - collecting taxes

- Paul is a plumber and Charlie is one of his clients
- On a given year she will either hire his services or not
- Her benefit from the service is \$200 and she pays him \$100
- If hired, Paul chooses whether to declare the sale and pay the IRS \$10 worth or taxes
- If the IRS receives no declaration they have the option of either audit Paul or not
- In that case, the IRS does not know whether Paul was not hired or is trying to evade taxes
- Auditing costs \$5
- If Paul is caught evading, he pays the IRS the owed taxes plus a \$200 fine

example – collecting taxes

example - collecting taxes

- Information sets describe what player know when making decisions
- Decision nodes that are indistinguishable are grouped together
- Each group is called an information set
- The decision maker knows that the game is in some node within the information set but he/she cannot tell which
- He she must make the same choice in the same way in all the nodes within the same information set

valid information structures

- 1. Players know when its their turn to make a choice
 - The same player has to move at all the nodes within the same information set
- 2. Players know which moves they have available
 - All the nodes within the same information set must have the same number of outgoing branches
- 3. Players never forget any information
 - Both about moves made by others and about their own moves
 - This condition is called perfect recall

invalid information structures

simultaneous move games

A simultaneous move game is an extensive form game in which

- 1. Each player makes a single choice
- 2. Each player has no information about his opponent's choices at the moment of making his own

rock, paper, scissors

rock, paper, scissors

- Some outcomes might be beyond the control of the players, e.g., weather
- Imperfect information about them can be a crucial part of the game
- We model this by adding a non-strategic player called nature or chance
- Nature has actions, but no payoffs
- Instead, we directly specify the probability that it makes each possible action

simplified poker

- Nature deals a single card to David
 - A black card with probability 1/2
 - A red card with probability 1/2
- After seeing his card, David decides whether to bet a dollar that it is red
- Seeing the bet but not the card, Emma chooses between calling or folding
- David wins the bet if the card is red, and Emma wins otherwise

simplified poker

extensive form games

An extensive form game consists of:

- 1. A set of players
- 2. A game tree representing the dynamic structure
- 3. A specification of who(either a player or chance) moves at each decision node
- 4. A valid information structure satisfying perfect recall
- 5. Probability assignments for chance's moves
- 6. A payoff for each player at each terminal node

example – a non-timeable tree

