Strategic Form Games

Bruno Salcedo

Reading assignments: Watson, Ch. 3 & 4

Cornell University · ECON4020 · Game Theory · Spring 2017

strategies

A strategy is a complete contingent plant for a player in a game

- Strategies specify a choice at every possible decision point, that is, at every information set
- "every decision point" means every decision point, even those that will not be reached (!)
- A strategy is a complete instruction manual/computer program
 - A machine would know what to do under every possible contingency
 - Even if something unexpected happens

strategic form games

- Any possible way of playing the game can be captured by a strategy
- Knowing each player's strategy uniquely determines an outcome
- Is knowing strategies and payoffs sufficient to analyze the situation?

A strategic form game is a mathematical object that specifies

- 1. The set of players
- 2. The set of strategies available to each player
- 3. A function assigning a payoff to each player for each strategy profile

		champion			
		(A,h)	(A,I)	(Y,h)	(Y,I)
	(C,H)	-1,4	-3,4	3, -2	3, -2
challenger	(C,L)	4, -3	5, -3	3, -2	3, -2
	(NC,H)	0,0	0,0	0,0	0,0
	(NC,L)	0,0	0,0	0,0	0,0

strategic vs. extensive form

- Strategic form game often interpreted as a simultaneous move game of choosing strategies
- Choices are made independently and simultaneously
- Extensive forms are more detailed descriptions
- Strategic forms drop some information. Is this information important?
- Some people argue that strategic form games contain all the *strategically relevant* information
- An extensive form game admits a unique strategic form representation
- A strategic form game represents different extensive form games

Example: Equivalent representations

notation

- *i* denotes a generic player
- -i denote the set of *i*'s opponents
- S_i denotes the set of strategies available for player i
- Typical strategies are denoted by s_i
- $S = \times_i S_i$ denotes the set of strategy profiles vectors that specify a strategy for each player
- *s* denotes a generic strategy profile
- Given $s = (s_1, s_2, ..., s_N)$ let $s = (s_i, s_{-i})$, where $s_{-i} = (s_1, s_2, ..., s_{i-1}, s_{i+1}, ..., s_{N-1}, s_N)$ is a vector that specifies a strategy for everyone except i
- $u_i(s)$ denotes the corresponding payoff for player i

strategic form games

A strategic form game is a mathematical object consisting of

- 1. A set of N players indexed by $i \in I = \{1, 2, \dots, N\}$
- 2. A set of strategies S_i for each player $i \in I$
- 3. A function $u_i : \times_i S_i \to \mathbb{R}$ for each player $i \in I$ that represents his/her payoff for each strategy profile

prisoner's dilemma

- Two suspects of a crime are arrested
- The DA has evidence to convict them for a misdemeanor (1 year in prison)
- She needs a confession for a longer sentence
- Both prisoners are offered a sentence reduction in exchange for a confession
 - If only one prisoner confesses, he walks free and his accomplice gets 5 years
 - If both prisoners confess they are sentenced to 3 years in prison each

	Keep Silent	Confess
Keep silent	-1 , -1	—5,0
Confess	0, -5	-3, -3

prisoner's dilemma

- A "closed bag" barter is going to take place
- Each party values his object 2 and his opponent's object 3
- Each party can choose to fill the bag or not

	Full	Empty
Full	3,3	0,5
Empty	5,0	2,2

• A grimmer version https://youtube.com/watch?v=Fcno71K4v7Y

meeting in NY

- Daniel is travelling to NY to meet with Charlie
- Charlie was supposed to pick up Daniel at the train station but they forgot to specify which!
- They have no way of communicating with each other (old example?)
- They both have to choose between Grand Central Station or Penn Station

GCS PS

GCS	1,1	0,0
PS	0,0	1,1

battle of the sexes

- Mike and Nancy want to go on a date
- Mike wants to go to a football game while Nancy prefers the opera
- They both prefer their least preferred activity over not having a date at all

	Football	Opera
Football	5,1	0,0
Opera	0,0	1,5

joint venture

- Anna and Bob simultaneously decide whether to invest in a start-up
- The start-up becomes profitable only if both invest

	Invest	Not
Invest	2,2	<i>−</i> 1,0
Not	0, -1	0,0

chicken

- Inspired by the classic film *Rebel Without a Cause (1955)* https://youtube.com/watch?v=u7hZ9jKrwvo
- Players drive towards each other
- They can continue driving straight or swerve to avoid a crash
- If only one player swerves he/she is a "chicken" which is something shameful but better than crashing and dying

	Continue	Swerve
Continue	0,0	5,1
Swerve	1,5	2,2

- There is a strong but slow pig and a weak but fast piglet
- They have to push a button in order to get some food
- The button is far away from the den where the food is dispensed
- Once the pig gets to the food, the piglet is pushed away and won't get to eat anything else
- The piglet only gets to eat if he gets to the food before the pig

		Press	Don't press
Strong	Press	3,1	0,5
Strong	Don't press	6, -2	-1, -1

Fast

,.

matching pennies

- Lisa and Joe secretly place a penny in their hand with either heads or tails facing up
- They reveal their pennies simultaneously
- If the pennies match, Lisa wins
- If they differ, then Joe wins

rock, paper, scissors

	Rock	Paper	Scissors
Rock	0,0	-1,+1	+1, -1
Paper	+1, -1	0,0	-1,+1
Scissors	-1,+1	+1, -1	0,0

uneven thumb

- Three kids simultaneously reveal a thumb pointing either up or down
- If all thumbs point in the same direction, the game ends a draw
- Otherwise, the kid with the uneven thumb looses

cournot competition

- Three firms indexed by 1, 2 and 3 sell the same commodity
- Firms simultaneously choose quantities in [0, 100]
- Let x be the quantity chosen by firm 1, y be the quantity chosen by firm 2 and z be the quantity chosen by firm 3
- The market price is determined by the inverse demand function

$$p(x, y, z) = 100 - x - y - z$$

• Firms have constant marginal cost equal to 2 so that profits are

$$u_1(x, y, z) = (p(x, y, z) - 2)x = -x^2 + (100 - y - z)x$$
$$u_2(x, y, z) = (p(x, y, z) - 2)y = -y^2 + (100 - x - z)y$$
$$u_3(x, y, z) = (p(x, y, z) - 2)z = -z^2 + (100 - x - y)z$$

bertrand competition

- Two firms indexed by 1 and 2 sell commodities that are imperfect substitutes
- Firms choose prices in [0, 10] simultaneously and independently
- Let p be the price chosen by firm 1, and q be the price chosen by firm 2
- The quantity demanded for each commodity depends on both prices

$$D_1(p,q) = 10 - p + \frac{1}{2}q$$
 $D_2(p,q) = 10 - q + \frac{1}{2}p$

• Firms have constant marginal cost equal to 2 so that profits are

$$u_1(p,q) = \left(p-2\right)D_1(p,q) = -p^2 + \left(12 + \frac{1}{2}q\right)p - \left(20 + q\right)$$
$$u_2(p,q) = \left(q-2\right)D_2(p,q) = -q^2 + \left(12 + \frac{1}{2}p\right)q - \left(20 + p\right)$$