Strategic Form Games

Bruno Salcedo

Reading assignments: Watson, Ch. 3 \& 4

Cornell University • ECON4020 • Game Theory • Spring 2017

strategies

A strategy is a complete contingent plant for a player in a game

- Strategies specify a choice at every possible decision point, that is, at every information set
- "every decision point" means every decision point, even those that will not be reached (!)
- A strategy is a complete instruction manual/computer program
- A machine would know what to do under every possible contingency
- Even if something unexpected happens

example - heavyweight championship

strategic form games

- Any possible way of playing the game can be captured by a strategy
- Knowing each player's strategy uniquely determines an outcome
- Is knowing strategies and payoffs sufficient to analyze the situation?

A strategic form game is a mathematical object that specifies

1. The set of players
2. The set of strategies available to each player
3. A function assigning a payoff to each player for each strategy profile

example - heavyweight championship

	champion				
		(A, h)	(A, I)		(Y, h)

strategic vs. extensive form

- Strategic form game often interpreted as a simultaneous move game of choosing strategies
- Choices are made independently and simultaneously
- Extensive forms are more detailed descriptions
- Strategic forms drop some information. Is this information important?
- Some people argue that strategic form games contain all the strategically relevant information
- An extensive form game admits a unique strategic form representation
- A strategic form game represents different extensive form games

Example: Equivalent representations

notation

- i denotes a generic player
- -i denote the set of i 's opponents
- S_{i} denotes the set of strategies available for player i
- Typical strategies are denoted by s_{i}
- $S=\times{ }_{i} S_{i}$ denotes the set of strategy profiles - vectors that specify a strategy for each player
- s denotes a generic strategy profile
- Given $s=\left(s_{1}, s_{2}, \ldots, s_{N}\right)$ let $s=\left(s_{i}, s_{-i}\right)$, where
$s_{-i}=\left(s_{1}, s_{2}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{N-1}, s_{N}\right)$ is a vector that specifies a strategy for everyone except i
- $u_{i}(s)$ denotes the corresponding payoff for player i

strategic form games

A strategic form game is a mathematical object consisting of

1. A set of N players indexed by $i \in I=\{1,2, \ldots, N\}$
2. A set of strategies S_{i} for each player $i \in I$
3. A function $u_{i}: \times_{i} S_{i} \rightarrow \mathbb{R}$ for each player $i \in I$ that represents his/her payoff for each strategy profile

prisoner's dilemma

- Two suspects of a crime are arrested
- The DA has evidence to convict them for a misdemeanor (1 year in prison)
- She needs a confession for a longer sentence
- Both prisoners are offered a sentence reduction in exchange for a confession
- If only one prisoner confesses, he walks free and his accomplice gets 5 years
- If both prisoners confess they are sentenced to 3 years in prison each

	Keep Silent	Confess
Keep silent	$-1,-1$	$-5,0$
Confess	$0,-5$	$-3,-3$

prisoner's dilemma

- A "closed bag" barter is going to take place
- Each party values his object 2 and his opponent's object 3
- Each party can choose to fill the bag or not

	Full	Empty
Full	3,3	0,5
Empty	5,0	2,2

- A grimmer version https://youtube.com/watch?v=Fcno71K4v7Y

meeting in NY

- Daniel is travelling to NY to meet with Charlie
- Charlie was supposed to pick up Daniel at the train station but they forgot to specify which!
- They have no way of communicating with each other (old example?)
- They both have to choose between Grand Central Station or Penn Station

battle of the sexes

- Mike and Nancy want to go on a date
- Mike wants to go to a football game while Nancy prefers the opera
- They both prefer their least preferred activity over not having a date at all

	Football	Opera
Football	5,1	0,0
Opera	0,0	1,5

joint venture

- Anna and Bob simultaneously decide whether to invest in a start-up
- The start-up becomes profitable only if both invest

	Invest	Not
Invest	2,2	$-1,0$
Not	$0,-1$	0,0

chicken

- Inspired by the classic film Rebel Without a Cause (1955) https://youtube.com/watch?v=u7hZ9jKrwvo
- Players drive towards each other
- They can continue driving straight or swerve to avoid a crash
- If only one player swerves he/she is a "chicken" which is something shameful but better than crashing and dying

	Continue	Swerve
Continue	0,0	5,1
Swerve	1,5	2,2

pigs

- There is a strong but slow pig and a weak but fast piglet
- They have to push a button in order to get some food
- The button is far away from the den where the food is dispensed
- Once the pig gets to the food, the piglet is pushed away and won't get to eat anything else
- The piglet only gets to eat if he gets to the food before the pig

Fast

matching pennies

- Lisa and Joe secretly place a penny in their hand with either heads or tails facing up
- They reveal their pennies simultaneously
- If the pennies match, Lisa wins
- If they differ, then Joe wins

	Heads	Tails
Heads	$-1,+1$	$+1,-1$
Tails	$+1,-1$	$-1,+1$

rock, paper, scissors

	Rock	Paper	Scissors
Rock	0,0	$-1,+1$	$+1,-1$
Paper	$+1,-1$	0,0	$-1,+1$
Scissors	$-1,+1$	$+1,-1$	0,0

uneven thumb

- Three kids simultaneously reveal a thumb pointing either up or down
- If all thumbs point in the same direction, the game ends a draw
- Otherwise, the kid with the uneven thumb looses

	Up	Down
Up	$1,1,-1$	$-1,1,1$
	$1,-1,1$	$0,0,0$
	Down	

cournot competition

- Three firms indexed by 1,2 and 3 sell the same commodity
- Firms simultaneously choose quantities in [0, 100]
- Let x be the quantity chosen by firm 1, y be the quantity chosen by firm 2 and z be the quantity chosen by firm 3
- The market price is determined by the inverse demand function

$$
p(x, y, z)=100-x-y-z
$$

- Firms have constant marginal cost equal to 2 so that profits are

$$
\begin{aligned}
& u_{1}(x, y, z)=(p(x, y, z)-2) x=-x^{2}+(100-y-z) x \\
& u_{2}(x, y, z)=(p(x, y, z)-2) y=-y^{2}+(100-x-z) y \\
& u_{3}(x, y, z)=(p(x, y, z)-2) z=-z^{2}+(100-x-y) z
\end{aligned}
$$

bertrand competition

- Two firms indexed by 1 and 2 sell commodities that are imperfect substitutes
- Firms choose prices in $[0,10]$ simultaneously and independently
- Let p be the price chosen by firm 1 , and q be the price chosen by firm 2
- The quantity demanded for each commodity depends on both prices

$$
D_{1}(p, q)=10-p+\frac{1}{2} q \quad D_{2}(p, q)=10-q+\frac{1}{2} p
$$

- Firms have constant marginal cost equal to 2 so that profits are

$$
\begin{aligned}
& u_{1}(p, q)=(p-2) D_{1}(p, q)=-p^{2}+\left(12+\frac{1}{2} q\right) p-(20+q) \\
& u_{2}(p, q)=(q-2) D_{2}(p, q)=-q^{2}+\left(12+\frac{1}{2} p\right) q-(20+p)
\end{aligned}
$$

