Rationality and Dominance

Bruno Salcedo

Reading assignments: Watson, Ch. 4 \& 5, and App. B

Cornell University • ECON4020 • Game Theory • Spring 2017

uggs vs. rain boots

uggs vs. rain boots

- Emma would like to wear her Ugg boots today but it might rain
- If it rains, she would prefer to wear her rain boots
- The problem is that she is uncertain about whether it is going to rain
- She believes that it is going to rain with probability $p \in(0,1)$

uggs vs. rain boots

- Expected utility from wearing her ugg boots

$$
U(\text { Ugg boots, } p)=10(1-p)-5 p=10-15 p
$$

- Expected utility from wearing her rain boots

$$
U(\text { Rain boots, } p)=4(1-p)+6 p=4+2 p
$$

- Emma will choose to wear her ugg boots if and only if

$$
U(\text { Ugg boots, } p) \geq U(\text { Rain boots, } p) \quad \Leftrightarrow \quad p \leq \frac{6}{17} \approx 35 \%
$$

expected utility hypothesis

- Uncertainty \approx lack of information
- A player is uncertain about an event if he does not know whether the event holds or not
- Beliefs are probability functions representing likelihood assessments
- Maintained assumption:

Players make choices to maximize their expected utility given their beliefs

st. petersburg paradox

- Flip a fair coin until it lands tails
- If we flipped the coin n times, you get $\$ 2^{n}$
- How much would you be willing to pay to participate?

$$
\begin{gathered}
\mathbb{E}\left[2^{n}\right]=\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 4+\frac{1}{8} \cdot 8+\ldots=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot 2^{n}=\infty \\
\mathbb{E}\left[\log \left(2^{n}\right)\right]=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \log \left(2^{n}\right)=\log (2) \sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot n=2 \log (2) \approx 0.60
\end{gathered}
$$

- When it comes down to monetary prizes
- Risk neutrality - maximize expected value
- Risk aversion - maximize the expectation of a concave utility function
- An agent is risk averse if and only if

$$
\mathbb{E}[u(\mathbf{x})] \leq u(\mathbb{E}[\mathbf{x}])
$$

for every random variable \mathbf{x} (Jensen's inequality)

beliefs

- Consider a strategic form game with independent choices
- Each player might be uncertain about his opponents' strategies

Given a strategic form game, a belief for player $i \in I$ is a probability distribution θ_{-i} over his opponent's strategies

- $\theta_{-i}\left(s_{-i}\right)$ is the likelihood that i assigns to his opponents' choosing s_{-i}
- If S_{-i} has N elements, then a belief for i is a vector consisting of N numbers between 0 and 1 that add up to 1
- If S_{-i} has two elements, then a belief for i can be characterized by a single number $p \in[0,1]$

battle of the sexes

	Football $[p]$	Opera $[1-p]$
Football	5,1	0,0
Opera	0,0	1,5

- A belief for Mike consists of two numbers $\theta_{N}(F)$ and $\theta_{N}(O)$ between 0 and 1 such that $\theta_{N}(F)+\theta_{N}(O)=1$
- Simpler notation $p=\theta_{N}(F)$ and $(1-p)=\theta_{N}(O)$
- p is the probability that Mike assigns to Nancy going to the football game and $(1-p)$ is the probability that Mike assigns to Nancy going to the Opera

expected utility

- Fix i's beliefs θ_{-i} about his opponents' behavior
- The expected payoff or expected utility for i from choosing s_{i} is

$$
U_{i}\left(s_{i}, \theta_{i}\right)=\mathbb{E}_{\theta_{i}}\left[u_{i}\left(s_{i}, \mathbf{s}_{-i}\right)\right]
$$

- For finite games, expected utility is jut a weighted sum if payoffs weighted by their likelihoods

$$
U_{i}\left(s_{i}, \theta_{i}\right)=\sum_{s_{-i} \in S_{-i}} \theta_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right)
$$

battle of the sexes

	Football $[p]$	Opera $[1-p]$
	Football Opera	5,1
	0,0	1,5

- Given his beliefs, Mike's expected utility for going to the football game is:

$$
U_{M}(\text { Football }, p)=5 \cdot p+0 \cdot(1-p)=5 p
$$

- His s expected utility for going to the opera is:

$$
U_{M}(\text { Opera, } p)=0 \cdot p+1 \cdot(1-p)=1-p
$$

battle of the sexes

- Given her beliefs, Nancy's expected utility for going to the football game is:

$$
U_{N}(\text { Football, } q)=1 \cdot q+0 \cdot(1-q)=q
$$

- His s expected utility for going to the opera is:

$$
U_{N}(\text { Opera, } q)=0 \cdot q+5 \cdot(1-q)=5-5 q
$$

example -4×4 game

	$\begin{gathered} \mathrm{A} \\ {\left[\theta_{2}(A)\right]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ {\left[\theta_{2}(B)\right]} \end{gathered}$	$\begin{gathered} C \\ {\left[\theta_{2}(C)\right]} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ {\left[\theta_{2}(D)\right]} \end{gathered}$
$\mathrm{a}\left[\theta_{2}(\mathrm{a})\right.$]	7, 9	4,5	6, 4	2, 2
b $\left[\theta_{2}(b)\right]$	2, 5	5, 2	8, 6	9, 8
c $\left[\theta_{2}(c)\right]$	5, 4	2,1	1, 3	4, 5
d $\left[\theta_{2}(d)\right]$	1, 8	4,7	4, 4	1, 9

$$
\begin{aligned}
& U_{1}\left(a, \theta_{2}\right)=7 \theta_{2}(A)+4 \theta_{2}(B)+6 \theta_{2}(C)+2 \theta_{2}(D) \\
& U_{1}\left(c, \theta_{2}\right)=5 \theta_{2}(A)+2 \theta_{2}(B)+\theta_{2}(C)+4 \theta_{2}(D) \\
& U_{2}\left(B, \theta_{1}\right)=5 \theta_{1}(a)+2 \theta_{1}(b)+\theta_{1}(c)+7 \theta_{1}(d) \\
& U_{2}\left(D, \theta_{1}\right)=2 \theta_{1}(a)+8 \theta_{1}(b)+5 \theta_{1}(c)+9 \theta_{1}(d)
\end{aligned}
$$

uneven thumbs

$$
\begin{gathered}
U_{1}\left(\text { Up }, \theta_{-1}\right)=\theta_{2}(U p) \theta_{3}(\text { Down })+\theta_{2}(\text { Down }) \theta_{3}(\text { Up }) \\
\\
-\theta_{2}(\text { Down }) \theta_{3}(\text { Down }) \\
\begin{aligned}
& 1 \\
&\left(\text { Down, } \theta_{-1}\right)=\theta_{2}(U p) \theta_{3}(\text { Down })+\theta_{2}(\text { Down }) \theta_{3}(\text { Up }) \\
&-\theta_{2}(\text { Up }) \theta_{3}(U p)
\end{aligned}
\end{gathered}
$$

bertrand competition

- Firms $\{1,2\}$ choose prices $p, q \in[0,10]$ and make profits

$$
\begin{aligned}
& u_{1}(p, q)=-p^{2}+\left(12+\frac{1}{2} q\right) p-(20+q) \\
& u_{2}(p, q)=-q^{2}+\left(12+\frac{1}{2} p\right) q-(20+p)
\end{aligned}
$$

- Firm 1's expected utility is given by:

$$
\begin{aligned}
U_{1}\left(p, \theta_{2}\right) & =\mathbb{E}_{\theta_{2}}\left[-p^{2}+\left(12+\frac{1}{2} \mathbf{q}\right) p-(20+\mathbf{q})\right] \\
& =-p^{2}+\left(12+\frac{1}{2} \bar{q}\right) p-(20+\bar{q})
\end{aligned}
$$

where $\bar{q}=\mathbb{E}_{\theta_{2}}[\mathbf{q}]$

best responses

A strategy $s_{i} \in S_{i}$ is a best response to a belief θ_{-i} if and only if it maximizes $U_{i}\left(\cdot, \theta_{-i}\right)$, i.e., if and only if

$$
U_{i}\left(s_{i}, \theta_{-i}\right) \geq U_{i}\left(s_{i}^{\prime}, \theta_{-i}\right)
$$

for every other strategy $s_{i}^{\prime} \in S_{i}$

- $\mathrm{BR}_{i}\left(\theta_{-i}\right) \subseteq S_{i}$ denotes the set of i 's best responses to θ_{i}
- Rational agents choose strategies in $\mathrm{BR}_{i}\left(\theta_{-i}\right)$

battle of the sexes

- Mike's expected utility functions in the Battle of the Sexes

$$
U_{M}(\text { Football }, p)=5 p \quad U_{M}(\text { Opera, } p)=1-p
$$

- Going to the football game is a best response if and only if

$$
U_{M}(\text { Football, } p) \geq U_{M}(\text { Opera, } p) \quad \Leftrightarrow \quad p \geq \frac{1}{6}
$$

- Going to the opera game is a best response if and only if

$$
U_{M}(\text { Football, } p) \leq U_{M}(\text { Opera, } p) \quad \Leftrightarrow \quad p \leq \frac{1}{6}
$$

- Mike is indifferent when $p=\frac{1}{6}$

battle of the sexes

optimization

- Derivative \sim slope: positive if increasing, negative if decreasing
- Second derivative ~ curvature: negative if concave
- Derivatives of polynomials

$$
\begin{array}{rll}
f(x)=x^{r} & \Rightarrow & f^{\prime}(x)=r x^{r-1} \\
f(x)=a \cdot g(x)+h(x) & \Rightarrow & f^{\prime}(x)=a \cdot g^{\prime}(x)+h^{\prime}(x) \\
f(x)=g(x) h(x) & \Rightarrow & f^{\prime}(x)=h(x) g^{\prime}(x)+g(x) h^{\prime}(x)
\end{array}
$$

Any concave differentiable function f is maximized at points that satisfy the first order condition $f^{\prime}(x)=0$

quadratic functions

- Firm 1's expected utility

$$
U_{1}\left(p, \theta_{1}\right)=-p^{2}+\left(12+\frac{1}{2} \bar{q}\right) p-(20+\bar{q})
$$

- Think of U_{1} as a function of p taking θ_{1} as a parameter

$$
U_{1}^{\prime}(p)=-2 p+\left(12+\frac{1}{2} \bar{q}\right)
$$

- The first order condition is

$$
-2 p+\left(12+\frac{1}{2} \bar{q}\right)=0
$$

- It has a unique best response

$$
p=6+\frac{1}{4} \bar{q}
$$

bertrand competition

- Rational players choose best response to their beliefs
- What predictions can we make if we don't know their beliefs?

Rational players can only choose a strategy if it is a best response to some belief

- The set of (first order) rational strategies for player i is

$$
\mathrm{B}_{i}=\left\{s_{i} \in S_{i} \mid \text { there is some } \theta_{-i} \text { such that } s_{i} \in \mathrm{BR}_{i}\left(\theta_{-i}\right)\right\}
$$

example -3×2 game

- Player 1's expected utility is given by:

$$
U_{1}(U, p)=6 p \quad U_{1}(M, p)=4-2 p \quad U_{1}(D, p)=x
$$

If $x<3$, then D is never a best response

If $x>3$, then D is a best response to $p=1 / 2$

bertrand competition

strictly dominance

- Finding the set of best responses is not always straightforward
- Easier to work with strictly dominated strategies
- Strict dominance is as an interesting concept on its own
- We care about its relation with rationality - a strategy is rational if and only if it is not strictly dominated

During WW2, Arrow was assigned to a team of statisticians to produce long-range weather forecasts. After a time, Arrow and his team determined that their forecasts were not much better than pulling predictions out of a hat. They wrote their superiors, asking to be relieved of the duty. They received the following reply, and I quote "The Commanding General is well aware that the forecasts are no good. However, he needs them for planning purposes".

- David Stockton, FOMC Minutes, 2005

mixed strategies

- Allow players to randomize their choices

$$
\text { A mixed strategy for player } i \text { is a probability distribution } \sigma_{i}
$$ over his strategies

- Mathematically, beliefs and mixed strategies are similar but the interpretation is different
- For example, in a game with two players 1 and 2
- θ_{2} represents 1's beliefs about 2's behavior, which might be deterministic
- σ_{2} represents 2's behavior, which could be unknown by 1

strictly dominated strategies

- i's expected utility for playing according to σ_{i}

$$
U_{i}\left(\sigma_{i}, s_{-i}\right)=\mathbb{E}_{\sigma_{i}}\left[u_{i}\left(\mathbf{s}_{i}, s_{-i}\right)\right]
$$

A pure strategy s_{i} is strictly dominated by a pure or mixed strategy σ_{i} if playing according σ_{i} gives i a strictly higher expected utility regardless of what other players do, i.e., if

$$
U_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right) \quad \text { for every } s_{-i} \in S_{-i}
$$

- Let UD_{i} denote the set of undominated strategies for i

	L	R
	6,3	0,1
M	2,1	4,0
	$2.5,2$	$2.5,1$

- For player $2, R$ is strictly dominated by L because

$$
\begin{aligned}
& u_{2}(U, L)=3>1=u_{2}(U, R) \\
& u_{2}(M, L)=1>0=u_{2}(M, R) \\
& u_{2}(D, L)=2>1=u_{2}(D, R)
\end{aligned}
$$

	L	R
	6,3	0,1
M	2,1	4,0
	$2.5,2$	$2.5,1$

- For player $1, D$ is not strictly dominated U nor by M
- It is strictly dominated by $\sigma_{1}=(1 / 3,2 / 3,0)$ because

$$
\begin{array}{r}
U_{1}\left(\sigma_{1}, L\right)=\frac{1}{3} 6+\frac{2}{3} 2=\frac{10}{3}>2.5=u_{1}(D, L) \\
U_{1}\left(\sigma_{1}, R\right)=\frac{2}{3} 4=\frac{8}{3}>2.5=u_{1}(D, R)
\end{array}
$$

dominance and best responses

A strategy s_{i} is rational if and only if it is not dominated by any other pure or mixed strategy, i.e., $U^{2}=B_{i}$

- Rational players always choose best responses
- We can find rational actions by eliminating strictly dominated strategies
- In many cases it suffices to consider dominance by pure strategies
- Finding all actions that are dominance by pure or mixed strategies is computationally similar to finding convex hulls

$\mathrm{B}_{i} \subseteq U \mathrm{D}_{i}$ in finite games

- Suppose the game is finite and take a rational action s_{i}^{0}
- s_{i}^{0} is a best response to some belief θ_{-i}
- Suppose towards a contradiction that s_{i}^{0} is dominated by some σ_{i}, then

$$
\begin{aligned}
U_{i}\left(s_{i}^{0}, \theta_{i}\right) & =\sum_{s_{-i}} \theta_{-i}\left(s_{-i}\right) \cdot u_{i}\left(s_{i}^{0}, s_{-i}\right)<\sum_{s_{-i}} \theta_{-i}\left(s_{-i}\right) \cdot U_{i}\left(\sigma_{i}, s_{-i}\right) \\
& =\sum_{s_{-i}} \sum_{s_{i}} \theta_{-i}\left(s_{-i}\right) \cdot \sigma_{i}\left(s_{i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right) \\
& =\sum_{s_{i}} \sigma_{i}\left(s_{i}\right) \cdot\left(\sum_{s_{-i}} \theta_{-i}\left(s_{-i}\right) \cdot u_{i}\left(s_{i}, s_{-i}\right)\right)=\sum_{s_{i}} \sigma_{i}\left(s_{i}\right) \cdot U_{i}\left(s_{i}, \theta_{-i}\right)
\end{aligned}
$$

- This would imply that $U_{i}\left(s_{i}^{0}, \theta_{-i}\right)<U_{i}\left(s_{i}, \theta_{-i}\right)$ for some $s_{i} \in S_{i}$
- Hence, s_{i}^{0} is undominated

$\mathrm{UD}_{i} \subseteq \mathrm{~B}_{i}$ in 3×2 example

If $x=5 / 2$, then D is never a best response and it is dominated by $\sigma_{1}=(2 / 3,1 / 3,0)$

prisoners' dilemma

- In some few cases, eliminating dominated strategies is sufficient to determine a unique outcome

	Keep Silent	Confess
Keep silent	$-1,-1$	$-5,0$
Confess	$0,-5$	$-3,-3$

- In the prisoner's dilemma, keeping silent is strictly dominated by confessing
- Therefore, rational players playing the prisoner's dilemma will confess
- When is this a good prediction?
- Anna and Bob work as partners
- Each provides effort in $[0,20]$
- Let A and B denote the levels of effort provided by Anna Bob
- Effort has a cost of $-A^{2}$ for Anna and $-B^{2}$ for Bob
- The firm's revenues are given by

$$
R(A, B)=4 A+2 B
$$

- Anna and Bob split the firm's revenues evenly so that payoffs are

$$
\begin{aligned}
& u_{\text {Anna }}(A, B)=2 A+B-\frac{1}{2} A^{2} \\
& u_{\text {Bob }}(A, B)=2 A+B-\frac{1}{2} B^{2}
\end{aligned}
$$

- Anna's expected utility is given by

$$
U_{\text {Anna }}\left(A, \theta_{\text {Bob }}\right)=2 A+\mathbb{E}_{\theta_{\text {Bob }}}[\mathbf{B}]-\frac{1}{2} A^{2}
$$

- Therefore

$$
U_{\text {Anna }}^{\prime}(A)=2-A \quad \& \quad U_{\text {Anna }}^{\prime \prime}(A)=-1
$$

- Hence, $U_{\text {Anna }}^{\prime}$ is strictly concave
- Anna's best response is given by the first order condition

$$
U_{\text {Anna }}^{\prime}\left(A^{*}\right)=0 \quad \Leftrightarrow \quad A^{*}=2
$$

- Since A^{*} maximizes Anna's expected utility regardless of her beliefs, every other level of effort is strictly dominated

correlated beliefs

- Some people like to distinguish between rationalizability and correlated rationalizability
- For more than two players, the original definition of rationalizability required independent beliefs, i.e., $\theta_{-i}=\prod_{j \neq i} \theta_{j}$
- If we imposed this requirement, we could have $\mathrm{B}_{i} \subsetneq \mathrm{UD}_{i}$
- When does this requirement make sense?

weak dominance

- Would you ever consider playing B ?
- Not if you were rational and assigned any positive probability to R (cautiousness?)
- A form of weak dominance will become important when we go back to extensive form games

