Equilibrium

Bruno Salcedo

Reading assignments: Watson, Ch. 9, 10 \& 11

Cornell University • ECON4020 • Game Theory • Spring 2017

pure strategy nash equilibrium

rationalizability vs. equilibrium

- Strength of rationality/rationalziability
- Strong ties to decision theory
- Relatively weak assumptions (?)
- Drawbacks rationality/rationalziability
- Weak predictions
- Specially with low levels of sophistication
- Allows for "erroneous" beliefs
- An alternative is to assume that players beliefs are correct
- Resulting solution concepts are called equilibria

self-enforcing agreements

- Suppose the players discuss and agree on some strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ before playing the game
- After that, players go different ways and choose strategies independently
- Suppose player i believes that his/her opponents will not deviate from the intended strategy profile
- Then, i wants to choose s_{i} if and only if it is a best response to s_{-i}
- That is, if and only if, i can not strictly benefit from unilaterally deviating from the intended strategy profile
- If no players have strict incentives to deviate unilaterally then the plan is self-enforceable, and we call it a Nash equilibrium

pure strategy Nash equilibrium

$$
\begin{aligned}
& \text { A Nash equilibrium in pure strategies (PNE) is a strategy } \\
& \text { profile } s \in S \text { such that no player can strictly gain from uni- } \\
& \text { laterally deviating, i.e., } \\
& \qquad u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \\
& \text { for every player } i \text { and every alternative strategy } s_{i}^{\prime} \in S_{i}
\end{aligned}
$$

- Equivalently, a PNE is a profile of strategies $s \in S$ which are best responses to each other, i.e., such that $s_{i} \in B R_{i}\left(s_{-i}\right)$ for every player i
- In a bimatrix game, a pair of strategies is a PNE if player 1 is maximizing his payoff along the column, and player 2 is maximizing her payoff along the row

example - a 4×4 game

example - battle of the sexes

- To find PNE a matrix game, one can start by highlighting the best response payoffs for each player
- Cells with all payoffs highlighted correspond to PNE
- Are these good predictions? When?
- Rationalizability
- Rationality
- Common knowledge of rationality
- Equilibrium in pure strategies
- Rationality
- Deterministic choices
- Correct beliefs
- Brandenburger (1992) Knowledge and Equilibrium in Games. Journal of Economic Perspectives

why correct beliefs?

- Communication - If players communicate prior to playing the game, they might agree to play certain way
- Institutions - Institutions/mediators might help to coordinate players expectations
- Learning - If players interact repeatedly they might learn from experience how to predict their opponents behavior
- Dynamic heuristics - Simple adaptive rules (e.g. do things that you regret not having done in the past) can converge to equilibria
- Imitation/selection - Dynamics resulting from the persistence of successful behavior via selection or adaptation (memes) might converge to equilibrium
- Focal points - Some strategies might naturally draw the attention of the players

rationalizability and pne

Proposition - PNE strategies are rationalizable

Proof:

- Suppose s^{*} is a PNE
- Best responses are undominated
- As long as s_{-i}^{*} has not been eliminated, s_{i}^{*} cannot be eliminated
- Hence, s^{*} survives iterated dominance

rationalizability and pne

Proposition - In finite games, if there is a unique rationalizable strategy profile, then it is a PNE

Proof:

- Suppose s^{0} is rationalizable, and thus never eliminated
- If s_{i}^{\prime} is a best response to s_{-i}^{0} of i, it would never be eliminated
- Since there is a unique rationalizable strategy for each player, $s_{i}^{\prime}=s_{i}^{0}$
- Hence, s_{i}^{0} is a best response to s_{-i}^{0}

classic 2×2 examples

cournot competition

- Firms 1 and 2 choosing quantities $q_{1}, q_{2} \geq 0$
- Constant marginal costs $c=10$ and inverse demand function

$$
P\left(q_{1}, q_{2}\right)=100-q_{1}-q_{2}
$$

- Profit functions (payoffs)

$$
u_{1}\left(q_{1}, q_{2}\right)=\left(90-q_{2}-q_{1}\right) q_{1} \quad u_{2}\left(q_{1}, q_{2}\right)=\left(90-q_{1}-q_{2}\right) q_{2}
$$

- Best responses to pure strategies

$$
B R_{1}\left(q_{2}\right)=45-\frac{1}{2} q_{2} \quad B R_{2}\left(q_{1}\right)=45-\frac{1}{2} q_{1}
$$

- A PNE is a pair $q_{1}^{*}, q_{2}^{*} \geq 0$ of mutual best responses

$$
q_{1}^{*}=\mathrm{BR}_{1}\left(q_{2}^{*}\right) \quad q_{2}^{*}=\mathrm{BR}_{2}\left(q_{1}^{*}\right)
$$

- Using our formula for best responses

$$
\begin{aligned}
& q_{1}^{*}=45-\frac{1}{2} q_{2}^{*} \quad \text { and } \quad q_{2}^{*}=45-\frac{1}{2} q_{1}^{*} \\
\Rightarrow & q_{2}^{*}=45-\frac{1}{2}\left(45-\frac{1}{2} q_{2}^{*}\right)=\frac{1}{2} 45+\frac{1}{4} q_{2}^{*} \\
\Rightarrow & 3 q_{2}^{*}=90 \Rightarrow q_{2}^{*}=30 \\
\Rightarrow & q_{1}^{*}=45-\frac{1}{2} 30=45-15=30
\end{aligned}
$$

- So the game has a unique $\operatorname{PNE}(30,30)$
- Recall that this was the unique rationalizable strategy profile

cournot competition

The NE is given by the intersection of BR curves

example - multiple NE

1	2	3	4	5	6	7	
1	35,35	$10, \underline{60}$	15,55	20,50	25,45	30,40	35,35
2	$\underline{60}, 10$	35,35	$20, \underline{50}$	25,45	30,40	35,35	40,30
3	55,15	$\underline{50}, 20$	35,35	$30, \underline{40}$	35,35	40,30	45,25
4	50,20	45,25	$\underline{40}, 30$	$\underline{35}, \underline{35}$	$\underline{40}, 30$	45,25	50,20
5	45,25	40,30	35,35	$30, \underline{40}$	35,35	$\underline{50}, 20$	55,15
6	40,30	35,35	30,40	25,45	$20, \underline{50}$	35,35	$\underline{60}, 10$
7	35,35	30,40	25,45	20,50	15,55	$10, \underline{60}$	35,35

rock paper scissors

	Rock	Paper	Scissors
Rock	0,0	$-1, \underline{1}$	$\underline{1},-1$
Paper	$\underline{1},-1$	0,0	$-1, \underline{1}$
Scissors	$-1, \underline{1}$	$\underline{1},-1$	0,0

youtube.com/watch?v=fVH7dxyr3Qc

Batzilis, Jaffe, Levitt, List \& Picel (2016) mimeo
equilibrium with mixed strategies

During WW2, Arrow was assigned to a team of statisticians to produce long-range weather forecasts. After a time, Arrow and his team determined that their forecasts were not much better than pulling predictions out of a hat. They wrote their superiors, asking to be relieved of the duty. They received the following reply, and I quote "The Commanding General is well aware that the forecasts are no good. However, he needs them for planning purposes".

- David Stockton, FOMC Minutes, 2005

mixing strategies

- In strictly competitive situations, players might want to remain unpredictable
- One way to do so is by using mixed strategies is by randomizing

A mixed strategy for player i is a probability distribution σ_{i} over his strategies

- Randomization can take different forms
- Rolling a dice
- Conditioning on random events or feelings
- Complex patterns

mixed strategy Nash equilibrium

- i 's expected utility for playing given mixed strategies $\sigma=\left(\sigma_{i}, \sigma_{-i}\right)$

$$
\begin{aligned}
U_{i}(\sigma) & =\mathbb{E}_{\sigma}\left[u_{i}\left(\mathbf{s}_{i}, \mathbf{s}_{-i}\right)\right] \\
& =\sum_{s_{i} \in S_{i}} \sum_{s_{-i} \in S_{-i}} \sigma_{i}\left(s_{i}\right) \sigma_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \quad \text { (for finite games) }
\end{aligned}
$$

A Nash equilibrium (NE) is a profile of pure or mixed strategies σ such that no player can strictly gain from unilaterally deviating, i.e.,

$$
U_{i}\left(\sigma_{i}, \sigma_{-i}\right) \geq U_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)
$$

for every player i and every alternative strategy $\sigma_{i}^{\prime} \in \Delta\left(S_{i}\right)$

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

- Suppose the row player randomizes uniformly
- Then, player 2's expected payoff is for any strategy is 0
- Hence, both players choosing $\sigma_{i}=(1 / 3,1 / 3,1 / 2)$ is a NE

alternative interpretations

- Do players really randomize? maybe (Arrow's anecdote)
- A mixed strategy NE could represent things other than randomization
- Subjective beliefs
- Proportions in a large population
- Frequencies over time

computing mixed equilibria

Proposition - If a rational player randomizes, she must be indifferent between all the strategies she chooses with positive probability

Proof:

- Suppose $u_{i}\left(s_{i}, \theta_{-i}\right)<u_{i}\left(s_{i}^{\prime}, \theta_{-i}\right)$
- Suppose σ_{i} assigns positive probability to both s_{i} and s_{i}^{\prime}
- Let σ_{i}^{\prime} be as σ_{i}, except that all the probability that σ_{i} assigns to $s_{i}, \sigma_{i}^{\prime}$ assigns it to s_{i}^{\prime}
- It is easy to verify that $U_{i}\left(\sigma_{i}^{\prime}, \theta_{-i}\right)>U_{i}\left(\sigma_{i}, \theta_{-i}\right)$

computing mixed equilibria

- The previous proposition asserts that players who randomize must be indifferent between all the strategies with positive probability
- This fact helps to find mixed strategy NE

1. "Guess" which strategies are in the support of the mixtures

- Be smart, e.g., ignore dominated strategies

2. For each player i, look for a mixed strategy for $-i$ that makes i be indifferent between these strategies

- Row's expected utility for each pure strategy is

$$
\begin{aligned}
U_{1}(U, p) & =3 p+5(1-p)=5-2 p \\
U_{1}(D, p) & =1 p+6(1-p)=6-5 p
\end{aligned}
$$

- Row is indifferent between U and D if $U_{1}(U, p)=U_{1}(D, p)$

$$
5-2 p=6-5 p \quad \Leftrightarrow \quad p=\frac{1}{3}
$$

example -2×2 game

- Col's expected utility for each pure strategy is:

$$
\begin{aligned}
& U_{2}(L, q)=3 q+2(1-q)=2-q \\
& U_{2}(R, q)=8 q+1(1-q)=7 q-1
\end{aligned}
$$

- Col is thus indifferent between L and R if and only if $U_{2}(L, q)=U_{2}(R, q)$

$$
2-q=7 q-1 \quad \Leftrightarrow \quad q=\frac{1}{6}
$$

Col

- We then have found a mixed equilibrium in pure strategies:

$$
\begin{aligned}
\sigma_{1} & =\left(\frac{1}{6}, \frac{5}{6}\right) \\
\sigma_{2} & =\left(\frac{1}{3}, \frac{2}{3}\right)
\end{aligned}
$$

- A player randomizing in a NE must be indifferent
- Indifference is a consequence of equilibrium conditions, not an assumption
- Why bother making my opponent indifferent?
- Purification results
- Equilibrium of dynamic process
- Empirical support (in some cases)

penalty kicks

- Chiappori, Levitt \& Groseclose (2002)

Testing Mixed-Strategy Equilibria When Players Are Heterogeneous

- Shooter wants to maximize the probability of scoring
- Keeper wants to minimize the probability of scoring
- Unique equilibrium in mixed strategies
- Probability of scoring should not depend on the direction of the kick, adjusting for heterogeneity
- Look at 500 penalty kicks from professional European League games
- Cannot reject the hypothesis of equal scoring probabilities
- Gaurioty, Pagez \& Wooders (2016) Nash at Wimbledon: Evidence from Half a Million Serves

Example: A 4×4 game

- Let p be the probability of b and $1-p$ the probability of c, for indifference we must have:

$$
9 p+(1-p)=p+4(1-p) \quad \Leftrightarrow \quad p=\frac{3}{11}
$$

- Let q be the probability of x and $1-q$ the probability of z, for indifference we must have:

$$
3 q+8(1-q)=7 q+0(1-q) \quad \Leftrightarrow \quad q=\frac{2}{3}
$$

existence of equilibrium

Theorem - Every finite strategic form game has at least one Nash equilibrium

Theorem - Generically, finite strategic form games have an odd number of Nash equilibria

