Equilibrium

Bruno Salcedo

Reading assignments: Watson, Ch. 9, 10 & 11

Cornell University · ECON4020 · Game Theory · Spring 2017

pure strategy nash equilibrium

rationalizability vs. equilibrium

- Strength of rationality/rationalziability
 - Strong ties to decision theory
 - Relatively weak assumptions (?)
- Drawbacks rationality/rationalziability
 - Weak predictions
 - Specially with low levels of sophistication
 - Allows for "erroneous" beliefs
- An alternative is to assume that players beliefs are correct
- Resulting solution concepts are called equilibria

self-enforcing agreements

- Suppose the players discuss and agree on some strategy profile $s = (s_1, \ldots, s_n)$ before playing the game
- After that, players go different ways and choose strategies independently
- Suppose player *i* believes that his/her opponents will not deviate from the intended strategy profile
- Then, *i* wants to choose s_i if and only if it is a best response to s_{-i}
- That is, if and only if, *i* can not strictly benefit from unilaterally deviating from the intended strategy profile
- If no players have strict incentives to deviate unilaterally then the plan is self-enforceable, and we call it a Nash equilibrium

A Nash equilibrium in pure strategies (PNE) is a strategy profile $s \in S$ such that no player can *strictly* gain from *unilaterally* deviating, i.e.,

$$u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$$

for every player *i* and every alternative strategy $s'_i \in S_i$

- Equivalently, a PNE is a profile of strategies s ∈ S which are best responses to each other, i.e., such that s_i ∈ BR_i(s_{-i}) for every player i
- In a bimatrix game, a pair of strategies is a PNE if player 1 is maximizing his payoff along the *column*, and player 2 is maximizing her payoff along the *row*

example – a 4×4 game

	а	b	с	c	1
w	0, <u>7</u>	2,5	<u>7</u> ,0	0,	1
x	5,2	<u>3</u> , <u>3</u>	5,2	0,	1
У	<u>7</u> ,0	2,5	0, <u>7</u>	0,	1
<u> </u>	0,0	0, -2	0,0	10,	-1

example - battle of the sexes

- To find PNE a matrix game, one can start by highlighting the best response payoffs for each player
- Cells with all payoffs highlighted correspond to PNE
- Are these good predictions? When?

assumptions

- Rationalizability
 - Rationality
 - Common knowledge of rationality
- Equilibrium in pure strategies
 - Rationality
 - Deterministic choices
 - Correct beliefs
- Brandenburger (1992) *Knowledge and Equilibrium in Games.* Journal of Economic Perspectives

why correct beliefs?

- *Communication* If players communicate prior to playing the game, they might agree to play certain way
- *Institutions* Institutions/mediators might help to coordinate players expectations
- *Learning* If players interact repeatedly they might learn from experience how to predict their opponents behavior
- *Dynamic heuristics* Simple adaptive rules (e.g. do things that you regret not having done in the past) can converge to equilibria
- *Imitation/selection* Dynamics resulting from the persistence of successful behavior via selection or adaptation (memes) might converge to equilibrium
- Focal points Some strategies might naturally draw the attention of the players

rationalizability and pne

Proposition — PNE strategies are rationalizable

Proof:

- Suppose s^* is a PNE
- Best responses are undominated
- As long as s_{-i}^* has not been eliminated, s_i^* cannot be eliminated
- Hence, *s*^{*} survives iterated dominance

rationalizability and pne

Proposition — In finite games, if there is a unique rationalizable strategy profile, then it is a PNE

Proof:

- Suppose s^0 is rationalizable, and thus never eliminated
- If s'_i is a best response to s^0_{-i} of *i*, it would never be eliminated
- Since there is a unique rationalizable strategy for each player, $s'_i = s^0_i$
- Hence, s_i^0 is a best response to s_{-i}^0

classic 2×2 examples

cournot competition

- Firms 1 and 2 choosing quantities $q_1, q_2 \ge 0$
- Constant marginal costs c = 10 and inverse demand function

$$P(q_1, q_2) = 100 - q_1 - q_2$$

• Profit functions (payoffs)

$$u_1(q_1, q_2) = (90 - q_2 - q_1)q_1$$
 $u_2(q_1, q_2) = (90 - q_1 - q_2)q_2$

• Best responses to pure strategies

$$BR_1(q_2) = 45 - \frac{1}{2}q_2$$
 $BR_2(q_1) = 45 - \frac{1}{2}q_1$

cournot competition

• A PNE is a pair $q_1^*, q_2^* \ge 0$ of mutual best responses

$$q_1^* = \mathsf{BR}_1(q_2^*) \qquad q_2^* = \mathsf{BR}_2(q_1^*)$$

• Using our formula for best responses

$$q_{1}^{*} = 45 - \frac{1}{2}q_{2}^{*} \text{ and } q_{2}^{*} = 45 - \frac{1}{2}q_{1}^{*}$$

$$\Rightarrow q_{2}^{*} = 45 - \frac{1}{2}\left(45 - \frac{1}{2}q_{2}^{*}\right) = \frac{1}{2}45 + \frac{1}{4}q_{2}^{*}$$

$$\Rightarrow 3q_{2}^{*} = 90 \Rightarrow q_{2}^{*} = 30$$

$$\Rightarrow q_{1}^{*} = 45 - \frac{1}{2}30 = 45 - 15 = 30$$

- So the game has a unique PNE (30, 30)
- Recall that this was the unique rationalizable strategy profile

cournot competition

The NE is given by the intersection of BR curves

example – multiple NE

location game

	1	2	3	4	5	6	7
1	35, 35	10, <u>60</u>	15, 55	20, 50	25, 45	30, 40	35, 35
2	<u>60</u> , 10	35, 35	20, <u>50</u>	25, 45	30, 40	35, 35	40, 30
3	55, 15	<u>50</u> , 20	35, 35	30, <u>40</u>	35, 35	40, 30	45, 25
4	50, 20	45, 25	<u>40</u> , 30	<u>35</u> , <u>35</u>	<u>40</u> , 30	45, 25	50, 20
5	45, 25	40, 30	35, 35	30, <u>40</u>	35, 35	<u>50</u> , 20	55, 15
6	40, 30	35, 35	30, 40	25, 45	20, <u>50</u>	35, 35	<u>60</u> , 10
7	35, 35	30, 40	25, 45	20, 50	15, 55	10, <u>60</u>	35, 35

rock paper scissors

youtube.com/watch?v=fVH7dxyr3Qc

Batzilis, Jaffe, Levitt, List & Picel (2016) mimeo

equilibrium with mixed strategies

During WW2, Arrow was assigned to a team of statisticians to produce long-range weather forecasts. After a time, Arrow and his team determined that their forecasts were not much better than pulling predictions out of a hat. They wrote their superiors, asking to be relieved of the duty. They received the following reply, and I quote "The Commanding General is well aware that the forecasts are no good. However, he needs them for planning purposes".

— David Stockton, FOMC Minutes, 2005

mixing strategies

- In strictly competitive situations, players might want to remain unpredictable
- One way to do so is by using mixed strategies is by randomizing

A mixed strategy for player i is a probability distribution σ_i over his strategies

- Randomization can take different forms
 - Rolling a dice
 - Conditioning on random events or feelings
 - Complex patterns

mixed strategy Nash equilibrium

• *i*'s expected utility for playing given mixed strategies $\sigma = (\sigma_i, \sigma_{-i})$

$$U_i(\sigma) = \mathbb{E}_{\sigma} \left[u_i(\mathbf{s}_i, \mathbf{s}_{-i}) \right]$$

=
$$\sum_{s_i \in S_i} \sum_{s_{-i} \in S_{-i}} \sigma_i(s_i) \sigma_{-i}(s_{-i}) u_i(s_i, s_{-i}) \quad \text{(for finite games)}$$

A Nash equilibrium (NE) is a profile of pure or mixed strategies σ such that no player can *strictly* gain from *unilaterally* deviating, i.e.,

$$U_i(\sigma_i, \sigma_{-i}) \geq U_i(\sigma'_i, \sigma_{-i})$$

for every player *i* and every alternative strategy $\sigma'_i \in \Delta(S_i)$

rock paper scissors

- Suppose the row player randomizes uniformly
- Then, player 2's expected payoff is for any strategy is 0
- Hence, both players choosing $\sigma_i = (1/3, 1/3, 1/2)$ is a NE

alternative interpretations

- Do players really randomize? maybe (Arrow's anecdote)
- A mixed strategy NE could represent things other than randomization
 - Subjective beliefs
 - Proportions in a large population
 - Frequencies over time

computing mixed equilibria

Proposition — If a rational player randomizes, she must be indifferent between all the strategies she chooses with positive probability

Proof:

- Suppose $u_i(s_i, \theta_{-i}) < u_i(s'_i, \theta_{-i})$
- Suppose σ_i assigns positive probability to both s_i and s'_i
- Let σ'_i be as σ_i , except that all the probability that σ_i assigns to s_i , σ'_i assigns it to s'_i
- It is easy to verify that $U_i(\sigma'_i, \theta_{-i}) > U_i(\sigma_i, \theta_{-i})$

computing mixed equilibria

- The previous proposition asserts that players who randomize must be indifferent between all the strategies with positive probability
- This fact helps to find mixed strategy NE
 - $1.\ \mbox{``Guess''}$ which strategies are in the support of the mixtures
 - Be smart, e.g., ignore dominated strategies
 - 2. For each player *i*, look for a mixed strategy for -i that makes *i* be indifferent between these strategies

• Row's expected utility for each pure strategy is

$$U_1(U, p) = 3p + 5(1 - p) = 5 - 2p$$
$$U_1(D, p) = 1p + 6(1 - p) = 6 - 5p$$

• Row is indifferent between U and D if $U_1(U, p) = U_1(D, p)$

$$5-2p=6-5p \quad \Leftrightarrow \quad p=\frac{1}{3}$$

• Col's expected utility for each pure strategy is:

$$U_2(L, q) = 3q + 2(1 - q) = 2 - q$$
$$U_2(R, q) = 8q + 1(1 - q) = 7q - 1$$

• Col is thus indifferent between L and R if and only if $U_2(L, q) = U_2(R, q)$

$$2-q=7q-1$$
 \Leftrightarrow $q=\frac{1}{6}$

• We then have found a mixed equilibrium in pure strategies:

$$\sigma_1 = \left(\frac{1}{6}, \frac{5}{6}\right)$$
$$\sigma_2 = \left(\frac{1}{3}, \frac{2}{3}\right)$$

- A player randomizing in a NE must be indifferent
- Indifference is a consequence of equilibrium conditions, not an assumption
- Why bother making my opponent indifferent?
 - Purification results
 - Equilibrium of dynamic process
 - Empirical support (in some cases)

penalty kicks

- Chiappori, Levitt & Groseclose (2002) Testing Mixed-Strategy Equilibria When Players Are Heterogeneous
- Shooter wants to maximize the probability of scoring
- Keeper wants to minimize the probability of scoring
- Unique equilibrium in mixed strategies
- Probability of scoring should not depend on the direction of the kick, adjusting for heterogeneity
- Look at 500 penalty kicks from professional European League games
- Cannot reject the hypothesis of equal scoring probabilities
- Gaurioty, Pagez & Wooders (2016) Nash at Wimbledon: Evidence from Half a Million Serves

Example: A 4×4 game

Let p be the probability of b and 1 − p the probability of c, for indifference we
must have:

$$9p + (1-p) = p + 4(1-p) \quad \Leftrightarrow \quad p = \frac{3}{11}$$

Let *q* be the probability of *x* and 1 − *q* the probability of *z*, for indifference we must have:

$$3q + 8(1-q) = 7q + 0(1-q) \quad \Leftrightarrow \quad q = \frac{2}{3}$$

existence of equilibrium

Theorem — Every **finite** strategic form game has **at least** one Nash equilibrium

Theorem — Generically, finite strategic form games have an odd number of Nash equilibria

