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In many economic applications, the relevant uncertain outcomes are monetary

prizes. In such settings, it is natural to assume that agents prefer higher returns

and lower risk. The first part of these notes defines what it means to dislike

risk, and proposes a way to measure the risk attitudes of economic agents. It also

briefly discusses the behavior of risk averse agents facing insurance and investment

problems. The second part of the notes proposes ways of measuring the size and

riskiness of lotteries. Throughout the document, we maintain the expected utility

hypothesis.

1. Risk Aversion

This section studies a way to define and measure risk aversion due to Pratt

(1964) and Arrow (1965). Consider an economic agent who makes choices to

maximize the expectation of a Bernoulli utility function u. I assume u is bounded

above. The set of outcomes is X = R. Uncertain prospects can thus be modeled as

random variables x. I use the notation x ∼ F to denote that F is the cumulative

distribution function (c.d.f.) of x, i.e., F (x) = Pr(x ≤ x) for x ∈ R.
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1.1. Risk-Averse Individuals

An economic agent is called risk averse if they always prefer the expected value

of a lottery to the lottery itself, i.e., if

u(E [ x ]) ≥ E [ u(x) ] , (1)

for every lottery x with finite expectation. Equation (1) is called Jensen’s inequal-

ity. Risk aversion is actually equivalent to money having decreasing marginal

utility, as in the Cramer-Bernoulli resolution to the St. Petersburg Paradox. In

mathematical terms, decreasing marginal utility means concavity.

Proposition 1.1 An agent is risk averse if and only if his Bernoulli utility func-

tion is concave.

Proof. (⇒) Suppose that (1) holds for all random variables with finite expectation,

and fix any x, y ∈ R and any µ ∈ [0, 1]. Consider a random variable x that takes

the value x with probability µ and the value y with probability (1−µ). Condition

(1) implies that

u
(

µx + (1 − µ)y
)

= u(E [ x ]) ≥ E [ u(x) ] = µu(x) + (1 − µ)u(y).

Hence, u is concave.

(⇐) Now, suppose that u is concave. We will prove that (1) holds for every

random variable with finite support. The proof is by mathematical induction on

the cardinality of the support. For (degenerate) random variables with only one

point on their support, (1) holds trivially. Now, suppose that (1) holds for all

random variables with at most n points on their support, and let x be a random

variable with n+1 point on their support. In particular, suppose that x takes the

values x1, . . . , xn+1 with strictly positive probabilities p1, . . . , pn+1, respectively.

Let q = (q1, . . . , qn) be given by qi = pi/(1 − pn+1). It is straightforward to

show that q is a well-defined probability vector using the facts that
∑n

i=1 pi = 1

and pi ∈ (0, 1) for i = 1, . . . , n + 1. Note that

n+1
∑

i=1

piu(xi) = pn+1u(xn+1) +
n
∑

i=1

(1 − pn+1)
pi

1 − pn+1

u(xi)
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= pn+1u(xn+1) + (1 − pn+1)
n
∑

i=1

qiu(xi)

≤ pn+1u(xn+1) + (1 − pn+1)u

(

n
∑

i=1

qixi

)

≤ u

(

pn+1xn+1) + (1 − pn+1)
n
∑

i=1

qixi

)

= u

(

n+1
∑

i=1

pixi

)

,

where the first inequality follows from the induction hypothesis, and the second

one from the concavity of u. �

Jensen’s inequality holds for general random variables, as long as their ex-

pected value is finite. One way to prove the general case is using a separating

hyperplane argument. See for instance this Stack Exchange answer.

Another way to think of risk aversion is in terms of the maximum prize a

decision maker would pay for a lottery. Fix a lottery x and a continuous and

strictly increasing Bernoulli utility function u. The certainty equivalent of x given

u is the number number cu(x) defined as the unique solution to

u
(

cu(x)
)

= E [ u(x) ] . (2)

Note that infx∈supp x u(x) ≤ E [ u(x) ] ≤ supx∈supp x
u(x), where supp x denotes the

support of x. Hence, the mean-value theorem implies that (2) has a solution. The

solution is unique because u is strictly increasing.

Proposition 1.2 An agent with an increasing and bounded Bernoulli utility func-

tion u is risk averse if and only if cu(x) ≤ E [ x ] for every random variable x.

Proof. Since u is increasing and u(cu(x)) = E [ u(x) ], we have

E [ u(x) ] ≤ u(E [ x ]) ⇐⇒ cu(x) ≤ E [ x ]

for every random variable x. The left-hand inequality corresponds to the definition

of risk aversion, and the right-hand inequality is the condition from the proposition.

�
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1.2. Measuring Risk Aversion

Consider an economic agent with a twice continuously differentiable, strictly

increasing, and concave utility function u. Since risk-aversion is related to cur-

vature, a natural candidate to measure risk aversion is the second derivative u′′.

However, a problem arises because Bernoulli utility functions are only unique up

to affine transformations. For any positive constant a > 0, a · u represents exactly

the same preferences as u. However, if a 6= 1, then (a · u)′′ = a · u′′ 6= u′′.

One way to deal with this issue is to use the index proposed by Arrow (1965)

and Pratt (1964). The Arrow-Pratt index of absolute risk aversion of u at wealth

level x is the number ru(x) given by

ru(x) = −
u′′(x)

u′(x)
.

Note that ru is invariant with respect to affine transformations. Hence, it

depends only on preferences. Also, it is consistent with Jensen’s inequality in

that risk averse agents have positive risk aversion. Finally, it can be justified by

the following theorem

Theorem 1.3 (Pratt (1964)) Given two strictly increasing, bounded above, and

twice continuously differentiable Bernoulli utility functions u and v, the follow-

ing are equivalent:

i. ru(x) ≥ rv(x) for all x ∈ R.

ii. There exists a monotone concave function g such that u = g ◦ v.

iii. cu(x) ≤ cv(x) for every lottery x with finite expected value.

Proof. (i⇔ii) Since v is strictly increasing, it is invertible and v−1 is also strictly

increasing. Let g = u ◦ v−1. Since u and v−1 are strictly increasing and differen-

tiable, so is g. It remains to show that g is concave if and only if ru(x) ≥ rv(x)

for all x ∈ R.

Taking derivatives of u = g ◦ v with the chain rule yields u′ = (g′ ◦ v) · v′ and

u′′ = (g′′ ◦ v) · (v′)2 + (g′ ◦ v) · v′′. Pointwise dividing u′′ by u′ > 0 yields

u′′

u′
=

(g′′ ◦ v) · (v′)2

(g′ ◦ v) · v′
+

(g′ ◦ v) · v′′

(g′ ◦ v) · v′
=⇒ ru − rv =

(

(v′)2

(g′ ◦ v) · v′

)

· (g′′ ◦ v)

4



Hence, for each x ∈ R, ru(x) ≥ rv(x) if and only if g′′(v(x)) ≤ 0.

The equivalence between (iii) and (ii) is left as an exercise for the reader. �

An important class of utility function are those that exhibit constant absolute

risk aversion (CARA). These utility functions are important because they form

a single-parameter class, and the parameter has a clear structural interpretation

ideal for comparative statics. Hence, they are ubiquitous in applied work. Setting

ru equal to a constant α results in the differential equation

u′′(x) = −αu′(x).

Using the change of variables v = u′ we can rewrite the equation as

dv

dx
= −αv =⇒

∫

1

v
dv = −α

∫

dx =⇒ log(v) = −αx + c1,

where c is an integration constant. Applying the exponential function to both

sides and undoing the change of variables yields

u′(x) = c2 exp(−αx) =⇒ u(x) = c3 exp(−αx) + c4.

Since Bernoulli utility functions are unique up to affine transformations, we can

choose c3 and c4 freely. The only restriction is that we must have c3 < 0 so that

u is increasing in wealth. The standard approach is to set c4 = 0 and c3 = −1 to

get u(x) = − exp(−αx).

There are other important measures of risk aversion. For example, a common

assumption is that wealthier individuals are more tolerant to risk. Hence, in some

applications it is useful to have a measure of risk attitudes that controls for the

level of wealth. The Arrow-Pratt coefficient of relative risk aversion is one such

measure. It is given by ρu(x) = x · ru(x). In applications involving dynamics,

the saving behavior of households actually depends on the sign third derivative

of the utility function. Another example is the notion of prudence defined by

−u′′′(x)/u′′(x), which helps to characterize precautionary saving motives (Kimball,

1990).
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1.3. Applications

Risk aversion plays an important role in many applications. Two of them

are investment, because financial assets often have risky returns. Another one

is insurance, because risk averse agents will try to buy instruments that reduce

their exposure to risk. In this section, we will consider two simple examples to

illustrate these points. Consider the problem of an investor with an initial wealth

ω > 0 and a bounded-above, concave, strictly increasing, and twice continuously

differentiable Bernoulli utility function u.

First, suppose that the individual can invest in a risky asset with a random

return x such that E [ x ] > 0. That is, if the investor invests a units in the

asset, the asset will pay a(1 + x). The investor is subject to portfolios satisfying

0 < a < ω.

Proposition 1.4 A risk-averse investor would invest a positive amount in an asset

as long as it has a positive expected return.

Proof. The expected utility from investing a is given by U(a) := E [ u(ω + ax) ].

The optimal investment maximizes U(a) subject to the constraints 0 ≤ a ≤ ω.

The necessary first-order condition for 0 to be optimal is U ′(0) ≤ 0. Note that

U ′(a) = E [ u′(ω + ax)x ]. Hence, U ′(0) = E [ u′(ω)x ] = u′(ω)E [ x ] > 0. �

Now suppose that the individual faces the possibility of a random loss of

magnitude y. Suppose that y < 0 almost surely. An insurance company offers

an insurance policy that mitigates the losses. More precisely, the individual can

choose a number a ∈ [0, 1] and, in case of a loss, the insurance company will pay

ay. If the unit price of the policy is p > 0, then the final wealth of the individual

woudl be given by w − pa − (1 − a)y. We say that the insurance is actuarially fair

if there are ero profits, that is p = E [ y ].

Proposition 1.5 A risk averse individual offered actuarially fair insurance will

insure completely.

Proof. For a ∈ [0, 1], let z(a) denote the final wealth of an individual who chooses

to insure a fraction a of their losses. Note that having actuarially fair insurance
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implies that

E [ z(a) ] = E [ w − y + a(y − p) ] = w − E [ y ] .

Now fix some a ∈ [0, 1]. The wealth of an individual who insures completely

equals z(1) = w − p = w − E [ y ] = E [ z(a) ]. Since the individual is risk averse,

E [ u(z(a)) ] ≤ u(E [ z(a) ]) = E [ u(z(1)) ]. �

2. Comparing Distributions

This section presents different ways of comparing lotteries over monetary out-

comes. First, we introduce two ordinal rankings called first-order and second-order

stochastic dominance. There orders informally capture the idea that one lottery

offers larger prizes than another, or that one lottery is less risky than another one,

respectively. The stochastic dominance relations are incomplete. The last part

of the section introduces a complete ranking due to Aumann and Serrano (2008).

For simplicity, some of the discussion restricts attention to lotteries with compact

support. However, the results hold true in more general spaces.

The terms first and second-order stochastic dominance were introduced by

Hadar and Russell (1969) and Hanoch and Levy (1969). The notions were devel-

oped independently by Rothschild and Stiglitz (1970), who also came up with a

useful characterization in terms of mean-preserving spreads. There is a notion

of third-degree stochastic dominance introduced by Whitmore (1970). The main

proofs and techniques are related to an old statistics literature from the 1930s

regarding a topic called majorization. For a review of this work see Levy (1992).

2.1. First-Order Stochastic Dominance

Suppose that lottery x pays 1 with probability 0.5 and 0 with probability 0.5,

and lottery y is uniformly distributed on [−1, 1]. Intuitively, lottery x appears to

be “better” than y. This section introduces a ranking over lotteries that formal-

izes that comparison. The ranking reflects the preferences of all expected utility

maximizers with monotone Bernoulli utility functions.
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Definition 2.1 Given two random variables x and y, we say that x first-order

stochastically dominates y, and denote it by x ≥1 y, if and only if E [ u(x) ] ≥

E [ u(y) ] for every non-decreasing function u : R → R.

It is straightforward to verify that first-order stochastic dominance is reflective,

transitive, but not complete. The following proposition offers a straightforward

way to determine whether x first-order stochastically dominates y by comparing

their c.d.f.s.

Proposition 2.1 Given two random variables x ∼ F and y ∼ G with supports

contained in [0, 1], x ≥1 y if and only if F (ξ) ≤ G(ξ) for every ξ ∈ R.

Before proving the proposition, let us try to build some intuition. Recall that

F (ξ) and G(ξ) measure the probabilities of x ≤ ξ and y ≤ ξ, respectively. Hence,

the condition F (ξ) ≤ G(ξ) says that it is more likely for y to give a prize smaller

than ξ. If this is the case for every ξ, then it is natural for agents who like money

to prefer x over y. Going back to our motivating example, the c.d.f.s of x and y

are given by

Pr(x ≤ ξ) =



















0 if ξ < 0
1

2
if 0 ≤ ξ < 1

1 if ξ ≥ 1

, Pr(y ≤ ξ) =



















0 if ξ < −1
1 − ξ

2
if 0 ≤ ξ < 1

1 if ξ ≥ 1

.

Hence, Pr(y ≤ ξ) ≥ Pr(x ≤ ξ) for all ξ ∈ R.

Proof of Proposition 2.1. (⇒) Suppose that x ≥1 y. For each ξ ∈ [0, 1], let

uξ(x) = 1 − 1(x ≤ ξ), where 1( · ) denotes the indicator function. The result

follows from the fact that E [ uξ(x) ] = F (ξ) and E [ uξ(y) ] = G(ξ) for all ξ ∈ [0, 1].

(⇐) I will only consider continuously differentiable utility functions. For a

general proof see this Stack Exchange answer. Suppose that F (ξ) ≤ G(ξ) for

every ξ ∈ R, and fix any continuously differentiable and non-decreasing function

u : R → R. Integrating by parts yields

∫ 1

0
u(ξ) d(F (ξ) − G(ξ)) +

∫ 1

0
u′(ξ)(F (ξ) − G(ξ)) dξ = u(ξ)(F (ξ) − G(ξ))

∣

∣

∣

∣

1

0

.

The right hand side is equal to 0 because F (1) = G(1) and F (0) = G(0). Hence,
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we have that

E [ u(x) ] − E [ u(y) ] = −
∫ 1

0
u′(ξ)(F (ξ) − G(ξ)) dξ.

Since u′(ξ) ≥ 0 and F (ξ) ≤ G(ξ) for every ξ ∈ R, the right-hand side is non-

negative, and therefore E [ u(x) ] ≥ E [ u(y) ]. �

2.2. Second-Order Stochastic Dominance

Consider two lotteries x and y. Suppose that y depends on both the realization

of x and the flip of a fair coin independent of x. If the coin lands head, y pays

x + 1, otherwise it pays x − 1. Both x and y have the same expected value, but

y has an added layer of “risk”. Hence, risk-averse individuals should prefer x to

y. This idea is captured by the notion of second-order stochastic dominance.

Definition 2.2 Given two random variables x and y, we say that x second-order

stochastically dominates y, and denote it by x ≥2 y, if and only if E [ u(x) ] ≥

E [ u(y) ] for every non-decreasing and concave function u : R → R.

Second-order stochastic dominance is consistent with first-order stochastic

dominance in that x ≥1 y implies x ≥2 y. Moreover, ≥2 is reflexive and transitive,

but incomplete. We will analyze two different characterizations of second-order

stochastic dominance. The first characterization is in terms of mean-preserving

spreads, defined as follows.

Definition 2.3 Given two random variables x and y, we say that y is a mean-

preserving spread of x if and only if E [ y − x|x ] = 0 almost surely.

Note that, if y is a mean-preserving spread of x, then E [ y ] = E [ x ]. Intu-

itively, y is a mean preserving spread of x if it can be constructed by adding noise

or risk to x. That is, if we can write it as y = x + z, where z is a random variable

such that E [ z|x ] = 0. In our motivating example, z would be a random variable

that takes the value 1 if the coin lands heads, and −1 if it lands tails.

The second characterization is in terms of c.d.f.s. Intuitively, if x ∼ F and

y ∼ G have the same expectation but x ≥2 y, then it must be the case that
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G assigns more probability to the tails of the distribution than F . The two

characterizations are formalized in the following proposition.

Proposition 2.2 Given two random variables x ∼ F and y ∼ G with supports

contained in [0, 1] and such that E [ x ] = E [ y ], the following are equivalent

(i) x second-order stochastically dominates y.

(ii) There exist random variables x
′ ∼ F and y

′ ∼ G such that y is a mean-

preserving spread of x.

(iii) For every ξ ∈ [0, 1]
∫ ξ

0
F (ξ) dξ ≤

∫ ξ

0
G(y) dy.

I will only prove that (ii) implies (i). The equivalence between (i) and (iii)

can be established using integration by parts twice. It is left as an exercise for

the reader. Showing that either (i) or (iii) imply (ii) is somewhat more involved,

and the proof is hard to find online.

Proof that (ii) implies (i). Suppose that y is a mean preserving spread of x, and

u is concave. Let z = y − x. Then,

E [ u(y) ] = E [E [ u(x + z)|x ] ] ≤ E [ u (E [ x + z|x ]) ] = E [ u (x) ] ,

where the first equality follows from the law of iterated expectations, the inequality

from Jensen’s inequality, and the second equality from te facts that E [ x|x ] = x

and E [ z|x ] = 0. �

2.3. An Index of Riskiness

First-order stochastic dominance captures the preferences of all expected util-

ity maximizers who prefer more money. Second-order stochastic dominance cap-

tures the preferences of those who, in addition, dislike risk. Neither ranking is

complete. One way to obtain a complete ranking of distributions is to restrict

attention to a smaller class of decision makers and a smaller class of lotteries.

Aumann and Serrano (2008) propose a ranking that summarizes the preferences

of all CARA agents over a class of lotteries called gambles.
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A gamble is a random variable x such that E [ x ] > 0 and Pr(x < 0) > 1.

Gambles are good investments on average, but are bad investments with positive

probability. Fix a given gamble x. Since gambles have positive expected value,

risk-neutral individuals would always accept the gamble. We can thus expect that

an agent who is only slightly risk averse would also accept it. On the other hand, a

decision maker who is very risk averse would find the prospect of losing money and

would reject the gamble. Aumann and Serrano (2008) propose to rank gambles

based on the level of risk aversion that would make a CARA agent indifferent

between accepting the gamble or not.

The Aumann-Serrano index of risk aversion of gamble x is denoted by and is

defined to be the unique solution Rx to the equation

E

[

− exp
(

−
x

R

) ]

= −1.

The left-hand side of the equation is the expected utility from accepting x for a

CARA agent with risk aversion equal to R. The right-hand side is the expected

utility of rejecting it, i.e., u(0) = −1. It is easy to show that the left-hand side

ranges from 0 to infinity as a function of R. Moreover, Lemma 2.3 below implies

that it is strictly increasing in R. Hence, the equation has a unique solution and

the Aumann-Serrano index is well defined.

Lemma 2.3 Let uα and uβ be CARA utility functions with coefficients of risk

aversion α and β, respectively. If α > β, then E [ uα(x) ] < E [ uβ(x) ] for every

random variable x.

Proof. Suppose that α > β > 0. Let vα and vβ be positive affine transformations

of uα and uβ such that vα(0) = vβ(0) = 1 and v′

α(0) = v′

β(0) = 1. Recall that

the Arrow-Pratt index of risk aversion is invariant with respect to positive affine

transformations. This implies that rvα
(ξ) = α and rvβ

(ξ) = β for all ξ ∈ R.

For every x > 0 we have that

log(v′

α(x)) = log(v′

α(x)) − log(v′

α(0)) =
∫ x

0

[

log(v′

α(ξ))
]

′

dξ

=
∫ x

0

v′′

α(ξ)

v′

α(ξ)
dξ = −

∫ x

0
α dξ < −

∫ x

0
β dξ = log(v′

β(x)).

Since log( · ) is strictly increasing, it follows that v′

α(x) < v′

β(x) for x > 0.
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Therefore, for every x > 0 we have

vα(x) = vα(x) − vα(0) =
∫ x

0
v′

α(ξ) dξ <
∫ x

0
v′

β(ξ) dξ = vβ(x).

An similar argument can be used to show that vα(x) < vβ(x) also for x < 0.

Hence, E [ vα(x) ] < E [ vβ(x) ] for every random variable x. The conclusion of the

proposition then follows because vα and vβ are positive affine transformations of

uα and uβ. �

The Aumann-Serrano index provides a complete and transitive ranking of gam-

bles. Moreover, the Aumann-Serrano ranking is consistent with first-order and

second-order stochastic dominance.

Proposition 2.4 Given gambles x and y, if x ≥1 y or x ≥2 y, then Rx ≤ Ry.

Proof. Suppose that x ≥1 y or x ≥2 y, and let u be a CARA utility function

with coefficient of absolute risk aversion equal to Ry. Since u is nondecreasing

and concave, it follows that E [ u(x) ] ≥ E [ u(y) ] = u(0). That is,

E

[

− exp

(

−
x

Ry

)]

≥ −1.

Lemma 2.3 implies that the left-hand side is decreasing in the degree of risk

aversion. Therefore, Rx ≤ Ry. �

2.4. Background Risk

We have been analyzing specific forms of risk in isolation. In reality, people face

many sources of risk simultaneously. Pomatto et al. (2019) and Tarsney (2018)

have shown that the presence of background risk can be very important.

Proposition 2.5 Given random variables x and y with finite mean such that

E [ x ] ≥ E [ y ], there exists a third random variable z independent of x and y

and such that x + z ≥1 y + z. Moreover, if z
′ ≥2 z and is also independent of x

and y, then x + z
′ ≥1 y + z

′.

Think of z as the background risk that the agent faces. In the presence of
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sufficiently large background risk, any expected utility maximizer with monotone

preferences would compare x and y just in terms of expectations, the way a risk-

neutral decision maker would. This is an interesting and exciting result that opens

up many questions, being that it is at odds with vast evidence that people are

risk averse. The proof is constructive, but it is rather elaborate. An important

thing to consider is that the random variable z has fat tails. However, it can be

arbitrarily close to a Gaussian random variable.

References

Arrow, K. J. (1965). Aspects of The Theory of Risk-Bearing. Yrjö Jahnsson Lectures.

Yrjö Jahnssonin Säätiö.

Aumann, R. J. and Serrano, R. (2008). An economic index of riskiness. Journal of

Political Economy, 116(5):810–836.

Hadar, J. and Russell, W. R. (1969). Rules for ordering uncertain prospects. The

American Economic Review, 59(1):25–34.

Hanoch, G. and Levy, H. (1969). The efficiency analysis of choices involving risk. The

Review of Economic Studies, 36(3):335–346.

Kimball, M. S. (1990). Precautionary saving in the small and in the large. Econometrica,

58(1):53–73.

Levy, H. (1992). Stochastic dominance and expected utility: survey and analysis. Man-

agement Science, 38(4):555–593.

Pomatto, L., Strack, P., and Tamuz, O. (2019). Stochastic dominance under independent

noise. Journal of Political Economy (forthcoming).

Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica,

32(1/2):122–136.

Rothschild, M. and Stiglitz, J. E. (1970). Increasing risk: I. a definition. Journal of

Economic Theory, 2(3):225–243.

Tarsney, C. (2018). Exceeding expectations: Stochastic dominance as a general decision

theory. arXiv:1807.10895.

Whitmore, G. A. (1970). Third-degree stochastic dominance. The American Economic

Review, 60(3):457–459.

Ü///

13


	Risk Aversion
	Risk-Averse Individuals
	Measuring Risk Aversion
	Applications

	Comparing Distributions
	First-Order Stochastic Dominance
	Second-Order Stochastic Dominance
	An Index of Riskiness
	Background Risk


