Econ 4020 – Second Preliminary Exam Practice

There are 6 problems. You have 70 minutes. Justify all your answers. Good luck!

- **1.** What is your name?
- 2. What percentage grade from 0 to 100 do you think you will get on this exam?
- 3. Find all the NE, both in pure and mixed strategies, for the following game

	a	b	с
x	1, 7	1, 5	3, 4
у	2, 3	0, 4	0,6

- 4. Anna and Bob bargain to split \$100 following the protocol described as follows. There are at most two rounds, and players do *not* discount the future ($\delta = 1$). On each round, a player is selected at random to act as the proposer. Anna is selected with probability $p \in (0,1)$ and Bob is selected with probability 1 - p. The proposer proposes a split (x, 100 - x) with $0 \le x \le 100$. The other player either accepts or rejects the proposal. If the offer is accepted, the game ends with payoffs (x, 100 - x). If an offer is rejected on the first round, the game moves onto the second round. If an offer is rejected on the second round, the game ends with payoffs (0, 0).
 - (a) Find a SPNE of the game
 - (b) Is the SPNE unique? (Justify your answer)
- 5. Anna and Bob work as partners. The firm's revenue depends on the level of effort provided by each of them. Each of them can provide any level of effort in [0, 100]. Let A denote the level of effort provided by Anna, and B the level of effort provided by Bob. Providing effort is costly. The cost for Anna is $-A^2$ and the cost for Bob is $-2B^2$ (note that the game is *not* symmetric). The total revenue of the firm equals A + B + AB. Anna and Bob receive half the firm's revenue each.
 - (a) Find the unique SPNE assuming that Anna and Bob choose their levels of effort independently.
 - (b) Find the unique SPNE assuming that Anna chooses her level of effort first, and then Bob chooses his level of effort after observing Anna's level of effort.

- **6.** Consider an infinitely repeated prisoners dilemma with $\delta = 0.9$ and stage game payoffs given in the table below, and the tit-for-tat strategy described as follows:
 - Cooperate on the first period
 - On each period after the first one t > 1, take the same action your opponent took on period t 1

- (a) Suppose that the outcome today is (C, D) and players are using tit-for-tat strategies, what would be the expected discounted continuation payoff?
- (b) Do the tit-for-tat strategies constitute a NE of the supergame?
- (c) Do the tit-for-tat strategies constitute a SPNE of the supergame?