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So far, we have studied the behavior of a single economic agent. For the

rest of the course, we will study the behavior of groups of agents using tools

from Non-Cooperative Game Theory. The origins of Game Theory can be traced

back to Cournot (1838). It became an independent discipline after the work of

von Neumann (1928) and von Neumann and Morgenstern (1944), and has become

a part of the standard toolbox of Economics since then. If you are looking for

further reading materials, the standard textbook references are Myerson (1991),

Fudenberg and Tirole (1991), and Osborne and Rubinstein (1994).

Non-Cooperative Game Theory is loosely based on three assumptions. First,

group behavior is determined by decentralized choices made by individual agents.

Second, individuals are rational, i.e., their behavior is consistent with the expected

utility hypothesis. Third, individuals are sophisticated and have no cognitive

constraints in their ability to process information. In particular, each individual

can reason about the behavior of others in order to guide their own choices.

These notes focus on a class of models called normal-form games. We will use

different solution concepts to make predictions: rationality, rationalizability, and

equilibrium. Each of these solution concepts requires stronger assumptions about

the beliefs of the individuals, but makes more precise predictions.

Group behavior is not always determined by decentralized choices. For exam-

ple, when a typical family goes to a movie theater they decide as a group which

movie to watch. It is not every individual member of the family choosing a movie

independently and hoping to coincide. The study of decisions made by groups

falls within the domain of Cooperative Game Theory. Unfortunately, we will only

have time to discuss non-cooperative models in class. Osborne and Rubinstein

(1994, Part IV) offers a good introduction to cooperative models.
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1. Normal-Form Games

These notes focus on a special class of games called normal-form games or

strategic-form games. In these games each agent makes a single choice. The

choices are implicitly assumed to be independent of one another, in the sense that

each agent has no information about the choices of other agents at the moment

of making their own.1 Although normal-form games appear to be static, later in

the course we will see that they can also model dynamic environments.

In a normal-form game, there is a nonempty set of players. Each player must

choose an action from a fixed nonempty set. A vector specifying one action

for each player is called an action profile. The preferences of the players are

summarized by utility functions defined over action profiles. Formally, a normal-

form game is a mathematical object defined as follows.

Definition 1 A game in normal-form is a tupple G = (I, A, u) where I is a

nonempty set of players, A = ×i∈IAi is a nonempty set of action profiles, and

u : A × I → R specifies utility functions for each player.

Unless otherwise stated, I will always assume I and A are finite. All the defi-

nitions and results can be extended to the case with A compact and u continuous.

Games with an uncountable number of players can be tricky. Their analysis is

well beyond the scope of the course.

Typical players are denoted by i, j, . . . , typical actions by ai, bi, . . . , and typical

action profiles by a, b, . . . . It is useful to express action profiles as a = (ai, a−i),

where ai denotes the action taken by player i, and a−i ∈ A−i := ×j 6=iAj denotes

the profile of actions taken by i’s opponents.

When a game has only two players, it can be represented with a matrix. Each

row corresponds to the action of one of the players. Each column corresponds

to the action of the other player. Each entry of the matrix lists two numbers

corresponding to the utility of each of the two players. The convention is to list

the payoff of the row player first. Consider for example the classic Prisoner’s

Dilemma game.

1The most common way to phrase this assumption is to say that choices are made ‘simultane-
ously and independently’, and many authors use the term ‘simultaneous-move games’. However,
I find such language to be somewhat misleading. The assumption is neither about the timing
of the choices, nor about their (statistical) independence.
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C D

C 1, 1 1 + g, −l

D 1 + g, −l 0, 0

Figure 1 – Payoff matrix for the Prisoners’ Dilemma, where l, g > 0.

Example 1.1 Prisoner’s Dilemma. Two prisoners are suspected of a crime. The

district attorney (DA) has enough evidence to convict them of a misdemeanor, but

would need a confession to convict them of the crime they allegedly committed.

The DA offers each prisoner a sentence reduction in exchange of a confession.

Each prisoner must choose to cooperate with her partner (C), or to defect (D) by

accepting the DA’s deal.

If none of the prisoners confess, then both of them would serve short sentences.

If only one prisoner confesses, she would be free while her accomplice would serve

a long sentence. However, if both prisoner’s confess, then both of them would

serve an intermediate sentence. Assuming that the prisoner’s preferences depend

only on the amount of time they serve, these preferences can be represented by

the utility functions in Figure 1.

1.1. Randomization

Probability measures over actions play an important role for at least three

reasons. First, recall from our discussion of expected utility theory that dominance

by randomized actions is useful to characterize rational behavior. Second, treating

a−i as a random variable captures the idea that i is uncertain about the behavior of

their opponents—whether they are actually randomizing or not. Third, there are

situations where players actually randomize. For example, Walker and Wooders

(2001) and Chiappori et al. (2002) find evidence of randomization by professional

athletes. Consider also the following anecdote about Kenneth Arrow.

During World War II, Arrow was assigned to a team of statisticians to produce

weather forecasts. The forecasts were used to make strategic decisions, such as

the timing of bombarding attacks. At some point, Arrow determined that their

forecasts were not very good. He wrote a report showing that using today’s
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weather as a forecast of tomorrow’s weather would be more accurate that the

forecasts his team was producing. His commanding general responded saying

that he was well aware that the forecasts were no good. However, he needed

them for planning purposes. Basing the deployment of troops on the current

weather would make the attacks predictable, which would give an advantage to

the opposing forces. Part of the goal of producing complex inaccurate forecasts

was to serve as a randomization device that induced unpredictable behavior.2

Let us introduce some notation and terminology for random objects. Amixed

action for player i is a distribution αi ∈ ∆Ai. I will sometimes refer to elements

of A as pure actions to emphasize the distinction with mixed actions. With

slight abuse of notation, we identify each pure action with the degenerated mixed

action that assigns full probability to it. The beliefs of player i are captured

by distributions α−i ∈ ∆A−i. A correlated action profile is a joint distribution

α ∈ ∆A. Given αi ∈ ∆Ai and α−i ∈ ∆A−i, let (αi, α−i) denote the correlated

action profile α given by α(ai, a−i) = αi(a) · α−i(a−i).

The utility that agent i receives from action profile a is denoted by ui(a).

Expected utility is denoted by

Ui(α) = Eα [ u(a) ] =
∑

a∈A

α(a)ui(a).

1.2. Rationality

From the perspective of a player, a normal-form game is nothing more than

a decision problem. Let us assume that all players are rational, in the sense that

they make choices to maximize their expected utility. As we learned during our

discussion of decision theory, rationality alone can rule out some forms of behavior

that are never optimal. For example, defecting always yields a higher expected

utility than cooperating for each prisoner in the Prisoner’s Dilemma. This is

regardless of her beliefs about her accomplice’s behavior. Hence, assuming that

players are rational allows us to conclude that they will both defect. This section

restates some of the definitions and results we learned before using the language

of normal-form games.

2I heard this version of the anecdote from my adviser. People often quote a different—less
exciting—version that was recorded in the minutes of a meeting of the Federal Reserve Board
(Board of Governors of the Federal Reserve System, 2005, pp. 11).
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An action ai ∈ Ai is said to be a best response to belief α−i ∈ ∆A−i if and only

if U(ai, α−i) ≥ U(a′
i, α−i) for every a′

i ∈ Ai. The set of best responses to α−i is

denoted by BRi(α−i). Given a game G, an action ai ∈ Ai is rational for player i

if there exists some α−i ∈ ∆A−i such that ai ∈ BRi(α−i). Rational players would

never choose actions that are not rational. Rational actions can be characterized

using strict dominance. A pure action ai ∈ Ai is strictly dominated by a pure or

mixed action αi ∈ ∆Ai if and only if ui(ai, a−i) < Ui(αi, a−i) for every a−i ∈ A−i.

Actions that are not strictly dominated by any pure or mixed action are called

undominated.

Theorem 1.1 A pure action is rational if and only if it is undominated.

The proof of Theorem 1.1 and the proofs of the following two lemmas are in

the lecture notes on Dominance and Rationality.

Lemma 1.2 If a mixed action assigns positive probability to a dominated pure

action, then it is dominated.

Lemma 1.3 Every dominated action is strictly dominated by a mixed action sup-

ported on the set of undominated actions.

Every solution concept we will analyze for the rest of these notes will assume

that players are rational. However, even this assumption is not without con-

troversy. In the Prisoner’s Dilemma, rationality implies that both prisoners must

defect, which is problematic for two reasons. First, mutual cooperation is a Pareto

improvement relative to mutual defection. It is peculiar that our definition of ra-

tionality implies behavior that is unambiguously irrational from the perspective of

the group. Second, the existing experimental and field evidence shows that people

often cooperate even when doing so is dominated (e.g., Dawes and Thaler (1988)).

Hence, the rationality assumption can be questioned both from a normative and

from a positive perspective.

There is a vast literature attempting to explain cooperation in the Prisoner’s

Dilemma and other forms of pro-social behavior. Cooperation could be driven by

different factors including psychological aspects (Geanakoplos et al., 1989, Rabin,

1993), altruism or preferences for fairness (Andreoni, 1990, Fehr and Schmidt,

1999), dynamic incentives (Kandori, 1992, Ellison, 1994), information incentives
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(Nishihara, 1997), or Kantian reasoning (Roemer, 2010, 2019). The most common

approach in economics (including this class) is to assume that agents are rational,

have selfish preferences, and make independent choices. However, it is worth

remembering that this assumption is not without loss of generality. It might lead

to poor approximations of reality, at least in some specific contexts.

2. Rationalizability

Assuming that all players are rational is enough to predict a specific outcome

in the prisoner’s dilemma. In most games, rationality alone has limited predictive

power. We can make more precise predictions by making further assumptions that

restrict the beliefs of the players. In this section, we assume that all players know

that all players are rational, all players know that all players know that all players

are rational, all players know that all players know that all players know that all

players are rational, and so on. This assumption is called common knowledge of

rationality. The corresponding solution concept is called rationalizability and was

introduced by Pearce (1984) and Bernheim (1984).3

2.1. Common Knowledge

The notion of common knowledge was introduced by Lewis (1969) and formal-

ized by Aumann (1976). Unfortunately, we don’t have enough time in class to go

over the rigorous details. We will have to make do with an informal definition

and an example.

Definition 2 A fact is mutually known among a group of individuals if everybody

knows it. It is commonly known if everybody knows it, and, in addition, everybody

knows that everybody knows it, everybody knows that everybody knows that

3The solution concept that I call rationalizability is what other authors call correlated ra-
tionalizability. It differs from the original definition of rationalizability, which require that the
players beliefs about their opponents are product beliefs. For example, if I = {1, 2, 3}, then
player 1 must believe that the actions of 2 and 3 are statistically independent. I believe such
restriction was imposed for historical reasons, and I see no good reasons to maintain it.

6



A

B

C

Figure 2 – Three logicians wearing hats

everybody knows it, and so on and so forth.

The following example illustrates that there is a big difference between mutual

knowledge and common knowledge. Anna Bob and Charlie are sitting in opposite

corners of a room with no mirrors. Each one of them is wearing either a blue hat

or a red hat. Each one of them can see color of the hat of the other two people

in the room, but not the color of his/her own hat. For instance, Anna can see

that Bob and Charlie have red hats, but she cannot tell whether her own hat is

red or blue. We assume that all this information is common knowledge. Anna is

wearing a blue hat and Bob and Charlie are wearing red hats. See Figure 2.

2.1.a. Mutual knowledge.– Suppose that Daniel enters the room and announces

that everybody is wearing either blue or red hats. Then he proceeds to ask them

one by one “Which color is your hat?” First he asks Anna, then Bob and then

Charlie. In every case the answer is the same “I don’t know”.

Note that it is common knowledge that everybody is wearing either a blue hat

or a red hat. This is because this fact was publicly announced and everybody

noticed that everybody heard it. This however does not imply that there has

to be either a red hat or a blue hat. It could very well be the case (given the

information that Anna, Bob and Charlie have) that all hats are blue or all hats

are red.

Anna knows that there are at least two red hats, because she can see Bob

and Charlie’s hats. But this does not imply any information about her own hat.

Similarly, Bob and Charlie know that there is at least one red hat, and at least

one blue hat. But they cannot infer anything about the color of their own hats.
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Hence nobody is able to provide a definitive answer to Daniel’s question. Notice

that it is mutual knowledge (everybody knows) that there is at least one red hat.

2.1.b. Common knowledge.– Now suppose that Daniel announces that every-

body is wearing either a blue or a red hat. In addition, he also announces that

there is at least one red hat in the room. The he proceeds as before asking them

one by one “Which color is your hat?”. Anna and Bob answers as before: “I don’t

know”. However, Charlie answers triumphant: “My hat is red!”

The only difference between the two scenarios is that, in the second one, Daniel

made the additional announcement that there is at least one red hat. However,

this is something that everybody already knew. The difference is that, by making

the announcement public, the existence of at least one red hat went from being

mutual knowledge to being common knowledge. After the announcement, every-

body knew that everybody knew that there was at least one red hat. This is what

allowed Charlie to deduce that her hat was red. Let’s see how.

Charlie knew that Bob knew that there was at least one red hat. Hence, if he

had seen only blue hats, he would have known that his own hat had to be the red

one. Since he did not know the color of his own hat, it had to be the case that he

was already seeing at least one red hat. That is, either Anna or Charlie hat to be

wearing a red hat. Since Charlie could see that Anna’s hat was blue, this meant

that her own hat had to be red. This line of thought was only possible because

she knew that Bob knew that there was at least one red hat.

This cartoon about three logicians in a bar tells a simpler version of the story.

2.2. Definition of Rationalizability

To understand how common knowledge of rationality can help make finer

predictions, let us start with an example.

Example 2.1 Consider the game from Figure 3. The only dominated action is

d, which is dominated by b. Action w is rational, because it is a best response

to b. However, if Anna knows that Bob is rational, then she would assign zero

probability to Bob playing d. For any such belief, y gives a higher expected utility

that w. Hence, if Anna is rational and knows that Bob is rational, she would

never play w.
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Anna

Bob

a b c d

w 0, 0 0, 1 0, 0 1, 0

x 3, 0 1, 1 0, 3 0, 0

y 1, 0 10, 10 1, 0 0, 0

z 0, 3 1, 1 3, 0 0, 0

Figure 3 – A 4 × 4 game. The rationalizable space is A∗ = {x, y, z} × {a, b, c}.

Given a game G, action sub-space is a set B = ×i∈IBi such that Bi ⊆ Ai for

all i ∈ I. Action ai is said to be rationalizable with respect to an action subspace

B if and only if it is a best response to some belief that assigns full probability

to B−i := ×j 6=iBj . Let Ri(B) ⊆ Ai denote the space of actions in Bi that are

rationalizable with respect to B, that is,

Ri(B) =
{

bi ∈ Bi

∣

∣

∣ ∃β−i ∈ ∆B−i, ∀ai ∈ Ai, Ui(bi, β−i) ≥ Ui(ai, β−i)
}

.

Also, let R(B) = ×i∈IRi(B).

Definition 3 Given a game G, an action subspace B is said to be self-rationalizable

if every action bi ∈ Bi is rationalizable with respect to B, i.e., if R(B) = B. An

action ai is rationalizable if and only it belongs to a self-rationalizable subspace.

Example 2.1 (continued). In our example, the subspace {(y, b)} is self-rationalizable

because y is a best response to b and vice versa. The sub-space {x, z} × {a, c}

is a also self-rationalizable. This is because x is a best response to a, z is a best

response to b, a is a best response to z, and c is a best response to x. The union

ob both subspaces, i.e., {x, y, z} × {a, b, c} is also self-rationalizable.

Moreover, these are the only self-rationalizable subspaces. To see why, first

note that a self-rationalizable space cannot contain d, because it is not rational.

Therefore, it also cannot contain w because w cannot be a best response to beliefs

that assign zero probability to d. By a similar reason, if a self-rationalizable

subspace contains x then it must also contain a. If it contains a, then it must also
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contain z. If it contains z, then it must also contain b. And if it contains b, then

it must also contain x.

We can thus conclude that the rationalizable actions are a, b, and c for Anna,

and x, y and z for Bob.

Let us try to understand the connection between our definition of rationalizabil-

ity and common knowledge of rationality. Suppose that an action ai is consistent

with common knowledge of rationality. If i is rational, ai must be a response to

some belief. If, in addition, i knows that all players are rational, then ai must be

a best response to a belief over actions that are in turn best responses. It other

words, it must be a best response to best responses. If , in addition, i knows that

all players know that all players are rational, then ai must be a best response to

best responses to best responses. If all players are rational, know that all players

are rational, and know that all players know that all players are rational, then they

would choose actions that are best responses to best responses to best responses.

This line of reasoning can be repeated an infinite number of times. Now,

consider the subspace consisting of all actions that have positive probability at

least once in the sequence of beliefs. This subspace must be self-rationalizable.

Hence, if a choosing action is consistent with common knowledge of rational-

ity, then it must be rationalizable according to Definition 3. The connection

between self-rationalizable sets and commonknwledge of rationality can be for-

malized using epistemic models, but doing so is beyond the scope of this course.

Instead, I will only state the result without a proof. This result was first proven

by Brandenburger and Dekel (1987) and Tan and Werlang (1988). For further

reading on this topic, I recommend Brandenburger (1992).

Proposition 2.1 Given a game G, an action ai is rationalizable if and only if

choosing it is consistent with common knowledge of rationality.

An action profile is rationalizable if it consists of rationalziable actions. De-

note the set of all rationalizable actions for player i by A∗
i , and the set of ratio-

nalizable action profiles by A∗ = ×i∈IA∗
i . We can show that A∗ is the largest

self-rationalizable set, in that it is self-rationalizable and contains every other

self-rationalizable set.

Proposition 2.2 A∗ is the largest self-rationalizable set.
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Proof. The definition of A∗ directly implies that if an action subspace B is self-

rationalizable, then B ⊆ A∗. Hence, we only have to show that A∗ is self-

rationalizable. Take any player i and any action ai ∈ A∗
i . There exists some

self rationalizable subspace B = ×i∈I Bi such that ai ∈ Bi. Since B = R(B),

there exists some α−i ∈ ∆B−i such that ai ∈ BRi(α−i). Since B ⊆ A∗, it follows

that α−i ∈ ∆A∗
−i. Hence, ai is rationalizable with respect to A∗. Since i and ai

were arbitrary, it follows that A∗ = R(A∗). �
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