Econ 9602 – Problem Set 3

Due on 02/05

- **1.** Let $\{\mathbf{x}_i | i = 1, 2, ...\}$ be a sequence of i.i.d. gambles, $\mathbf{z}_n = \sum_{i=1}^n \mathbf{x}_i$ and $\bar{\mathbf{z}}_n = \mathbf{z}_n/n$ for n = 1, 2, ... Denote the Aumann-Serrano index of risky aversion of \mathbf{z}_n by R_n , and that of $\bar{\mathbf{z}}_n$ by \bar{R}_n .
 - (a) Show that R_n does not depend on n.
 - (b) Express R_n as a function of R_n , and show that $\lim_{n\to\infty} R_n = 0$.
- **2.** Consider an investor with a twice continuously differentiable Bernoulli utility function u with u' > 0 and u'' < 0. Suppose the investor faces a background risk \mathbf{z} with $\mathbb{E}[\mathbf{z}] = 0$ and $\mathbb{E}[\mathbf{z}^2] > 0$. Let $v : \mathbb{R} \to \mathbb{R}$ be given by $v(x) = \mathbb{E}[u(x + \mathbf{z})]$. Compare the Arrow-Pratt coefficients of risk aversion of u and v.
- **3.** Let **x** be a gamble that pays \$110 or -\$100, each with probability 1/2. Suppose that a risk averse agent with Bernoulli utility function u rejects the gamble at any initial wealth level. That is, $\mathbb{E}[u(\omega + \mathbf{x})] < u(\omega)$ for all $\omega \in \mathbb{R}$. Show that the agent would always reject *any* lottery that involves a loss of at least -\$1000 with probability at least 1/2.
- **4.** Let Ω be the set of possible states of the world, and let Π be an information partition of Ω for some agent. For each $\omega \in \Omega$, let $\pi(\omega)$ denote the unique block of the partition which includes ω . Say that the agent *knows* event $E \subseteq \Omega$ in state ω if $\pi(\omega) \subseteq E$. Let K(E) denote the set of states where the agent knows E, i.e.,

$$K(E) = \{ \omega \in \Omega \mid \pi(\omega) \subseteq E \}.$$

- (a) Let $\Omega = \{0, 1, 2, 3\}$, $\Pi = \{\{0, 1\}, \{2, 3\}\}$, and $E = \{1, 2, 3\}$. Find K(E).
- (b) Show that if the agent know E, then E must be true. That is, $K(E) \subseteq E$.
- (c) Show that if the agent know E, then she also knows that she knows E. That is, $K(E) \subseteq K(K(E))$ (and therefore K(K(E)) = K(E)).
- 5. Consider a CARA agent with coefficient of risk aversion equal to $\alpha > 0$. Suppose there are two states x_1 and x_2 with probabilities p and (1 p), respectively. The agent must choose one of three assets a_1 , a_2 , and a_3 . The returns of the assets are (0, 100), (20, 75), and (40, 50), respectively, where the first number represents the payoff in state x_1 and the second number to the payoff in state x_2 .

- (a) Show that choosing a_2 is rational.
- (b) What can we infer about the beliefs and risk aversion of the agent if she chooses a_2 ?
- (c) Consider the signal structure (S, σ) with $S = \{s_1, s_2\}$, $\sigma(s_1|x_1) = 1 \epsilon$, and $\sigma(s_1|x_2) = \epsilon$ for some $\epsilon > 0$. How much would the agent be willing to pay to observe the signal before choosing an asset?
- (d) How does your answer to (c) vary with respect to ϵ and p? Provide some intuition for this answer.
- **6.** Let p and q be lotteries with finite support X. The Kullback-Leibler divergence between p and q is the number D(p||q) defined by

$$D(p||q) = \sum_{x \in X} p(x) \log\left(\frac{p(x)}{q(x)}\right).$$

Which of the properties that define a metric metric are satisfied by the Kullback-Leibler divergence?

- 7. Suppose the true state of nature is either high or low. Consider an agent that must choose an action $a \in \{0, 1\}$. The agent prefers action a if and only if she believes the state is high with probability at least 1/2. Suppose that she assigns a prior belief $p \in (0, 1)$ to the state being high. Before choosing an action, the agent observes a signal coming from the structure (S, σ) .
 - (a) Find all the distributions over posteriors that are consistent with the prior beliefs of the agent.
 - (b) Show that, if $p \leq 1/2$, then there exists a signal structure that induces the agent to choose a = 1 with probability 2p.
 - (c) Show that there does *not* exists a signal structure that induces the agent to choose a = 1 with probability strictly greater than 2p.

U///