Pricing Algorithms and Tacit Collusion

Bruno Salcedo

The Pennsylvania State University

January 2016

The Making of a Fig	
2000	
and a	

Al offers for The Making of a Fly: The Genetics of Animal Design (Paperback) by Pter A Lawrence control of the Control of t

Return to product information | Have one to sell? | Every purchase on Amazon.com is protected by an A-to-z guarantee. | Feedback on this page? Tell us what you think

Ship to: Bruno Salcedo- S guaranteed with used iten	tate College (Learn more *) Show only: •	Prime C Free shipping Sorted by: Price	e + Shipping + Access cod	ies and supplements are not
Price + Shipping	Condition (Learn more)	Delivery	Seller Information	Buying Options
\$79.84	Used - Very Good	Arrives between December 14-28. Ships from United Kingdom. Learn more about Import fees and international shipping time. International & domesic shipping rates and return policy.	_nearfine_ positive over the past 12 months. (42,955 total ratings)	Add to cart
+ \$3.99 shipping + \$0.00 estimated tax	Gently used. Expect delivery in 20 days.			or Sign in to turn on 1-Click ordering.
\$79.85 + \$3.99 shipping + \$0.00 estimated tax	Used - Very Good Very Good condition	Arrives between Nov. 23 - Dec. 9. Ships from GA, United States. Domestic shipping rates and return policy.	quality7 positive over the past 12 months. (423,580 total ratings)	Add to cart or Sign in to turn on 1-Click ordering.
\$82.28 + \$3.99 shipping + \$0.00 estimated tax	Used - Good This Book is in Good Condition. Used Copy With Light Amount of Wear. 100% Guaranteed.	Arrives between Nov. 23 - Dec. 9. Domestic shipping rates and return policy.	-Daily Deals-	Add to cart
				or Sign in to turn on 1-Click ordering.

"The Making of the Fly" listed in Amazon for \$79.84 on 11/15/15

the by P	The Making of a Fty: The Genetics of Animal Design (Paperback) by hete: A Lawrence			
STUNN S BE				
Alwa				
All New () Show Them	from \$18,651,718.08) Used (11 from	94736)	Sorted by Pror + Stating 1	
New 1-2 of 2 offen	S	Print Records		
\$18,651,718.00 •12.Waheang	8 New	Setter Internation Setter performance Setter Interge, Relevant, <u>3255, possibler</u> wave the past L2 months. (8,278 tand entropy) L4 (Stack, Stopa Setter KL), conset Extens. <u>Remarks: University of Setters: John</u> Board ma, Perfect Constance, Standhards Gaurenteed.	Sec. in to turn on 1-Olck ordering.	
\$23,698,655.9 • 11 Wishborg	3 New	Loss: borrectional South Standing, WARKING (2022), page30268 where the parts 12 months, (227,232 total relativity) Setting Containing and Standing and Standing St	Add to Can Sector to Sum on 3 - Click ordering.	

"The Making of the Fly" listed in Amazon for 18,651,718.08 on 4/18/11

- Online retail (Ezrachi & Stucke, 2015)
- Airlines (Borenstein, 2004)
- High-frequency trading (Boehmer, Li & Saar, 2015)
- Online auctions
- Hierarchical firms

"We will not tolerate anticompetitive conduct, whether it occurs in a smoke-filled room or over the Internet using complex pricing algorithms. American consumers have the right to a free and fair marketplace online, as well as in brick and mortar businesses."

- Bill Baer, Department of Justice

1. Responsiveness: algorithms rapidly react to market outcomes

- 1. Responsiveness: algorithms rapidly react to market outcomes
- 2. Short-term commitment: algorithms cannot be revised too often

- 1. Responsiveness: algorithms rapidly react to market outcomes
- 2. Short-term commitment: algorithms cannot be revised too often
- 3. Long-term flexibility: algorithms can be revised over time

- 1. Responsiveness: algorithms rapidly react to market outcomes
- 2. Short-term commitment: algorithms cannot be revised too often
- 3. Long-term flexibility: algorithms can be revised over time
- 4. Observability: rival's algorithm can be decoded

When demand shocks arrive much more frequently than algorithm revisions, the long-run joint profits from any subgame-perfect equilibrium are close to those of a monopolist

When demand shocks arrive much more frequently than algorithm revisions, the long-run joint profits from any subgame-perfect equilibrium are close to those of a monopolist

When demand shocks arrive much more frequently than algorithm revisions, the long-run joint profits from any subgame-perfect equilibrium are close to those of a monopolist

When demand shocks arrive much more frequently than algorithm revisions, the long-run joint profits from any subgame-perfect equilibrium are close to those of a monopolist

When demand shocks arrive much more frequently than algorithm revisions, the long-run joint profits from any subgame-perfect equilibrium are close to those of a monopolist

outline

1. introduction

2. example

3. model

4. main result

5. closing remarks

1. introduction

2. example

3. model

4. main result

5. closing remarks

two-price two-period duopoly

- One consumer tonight and one consumer tomorrow night
- Stage game is a prisoner's dilemma

$$\begin{array}{cccc}
p^{H} & p^{L} \\
p^{H} & 2,2 & 0,3 \\
p^{L} & 3,0 & 1,1
\end{array}$$

- At the beginning of the game firm simultaneously choose pricing algorithms
 - a price for tonight p_j
 - a contingent price for tomorrow night $p'_j(p_{-j})$

• Exogenous stochastic revision opportunities each morning

	revision	no revision
revision	0	μ
no revision	μ	$1-2\mu$

• Exogenous stochastic revision opportunities each morning

	revision	no revision
revision	0	μ
no revision	μ	$1-2\mu$

• Exogenous stochastic revision opportunities each morning

	revision	no revision
revision	0	μ
no revision	μ	$1-2\mu$

• Suppose firm 1 uses "tit for tat" and firm 2 has a revision on the first day

- Suppose firm 1 uses "tit for tat" and firm 2 has a revision on the first day
 - 2's profits from choosing p^L on day 1 are bounded above by

$$\hat{v}_2^L = \underbrace{1}_{\text{day 1}} + \underbrace{(1-\mu)1}_{\substack{\text{day 2}\\1 \text{ doesn't revise}}} + \underbrace{\mu3}_{\substack{\text{day 2}\\1 \text{ revises}}} = 2 + 2\mu$$

- Suppose firm 1 uses "tit for tat" and firm 2 has a revision on the first day
 - 2's profits from choosing p^L on day 1 are bounded above by

$$\hat{v}_2^L = 1 + (1 - \mu)1 + \mu 3 = 2 + 2\mu$$

- 2's profits from choosing p^H on day 1 and p^L on day 2 are bounded below by

$$\underline{v}^{H} = \underbrace{0}_{\text{day 1}} + \underbrace{(1-\mu)3}_{1 \text{ day 2}} + \underbrace{\mu1}_{\substack{\text{day 2}\\1 \text{ doesn't revises}}} = 3 - 2\mu$$

- Suppose firm 1 uses "tit for tat" and firm 2 has a revision on the first day
 - 2's profits from choosing p^L on day 1 are bounded above by

$$\hat{v}_2^L = 1 + (1 - \mu)1 + \mu 3 = 2 + 2\mu$$

– 2's profits from choosing p^H on day 1 and p^L on day 2 are bounded below by

$$\underline{v}_{2}^{H} = 0 + (1 - \mu)3 + \mu 1 = 3 - 2\mu$$

– If $\mu < 1/4$ then $\underline{v}_2^H > \hat{v}_2^L$

- Suppose firm 1 uses "tit for tat" and firm 2 has a revision on the first day - If $\mu < 1/4$ then firm 2 chooses p^H on day 1
- If $\mu < 1/4,$ firm 1 can guarantee profits above 2 by using "tit for tat"
 - If firm 2 sets p^L on both days, firm 1 makes 2 in profits
 - If firm 2 sets $p^{\boldsymbol{M}}$ on at least one day, firm 1 makes at least 3 in profits
 - If firm 2 has a revision on day 1 it sets p^H

- Suppose firm 1 uses "tit for tat" and firm 2 has a revision on the first day - If $\mu < 1/4$ then firm 2 chooses p^H on day 1
- If $\mu < 1/4$, firm 1 can guarantee profits above 2 by using "tit for tat"

If revisions are sufficiently unlikely, joint profits in any subgame-perfect equilibrium are strictly greater than $4\,$

1. introduction

2. example

3. model

4. main result

5. closing remarks

- Two symmetric firms $j \in \{1, 2\}$
- Continuous time $t \in [0,\infty)$
- Consumers arrive randomly
 - Poisson process with parameter $\lambda>0$
 - (y_n) denotes sequence of arrival times
 - A single consumer arrives at each y_n

stage game

$$P = \mathbb{R}_+$$

stage game

$$P = \mathbb{R}_+ \qquad \pi_j : P^2 \to \mathbb{R}_+$$
stage game

pricing algorithms

- Pricing algorithms set current prices contingent on the history of past prices
- Finite automata $a = (\Omega, \omega_0, \theta, \alpha)$
 - Finite set of states $\ \Omega$
 - Initial state ω_0
 - Pricing rule $\alpha:\Omega\to P$
 - Measurable transition function $\ \theta: \Omega \times P \to \Omega$

always monopolistic

grim trigger

two monopolistic

dynamic game

- Firms simultaneously set algorithms at time t = 0 and can revise them at exogenous stochastic times
 - Poisson process with parameter $\mu>0$
 - Arrival of revision is independent across firms and independent of consumer-arrival times

dynamic game

- Firms simultaneously set algorithms at time t = 0 and can revise them at exogenous stochastic times
- A strategy $s_j: H_j \to \Delta(A)$ for firm j chooses algorithms

- As a function of past algorithms, prices, and number of past consumers

dynamic game

- Firms simultaneously set algorithms at time t = 0 and can revise them at exogenous stochastic times
- A strategy $s_j : H_j \to \Delta(A)$ for firm j chooses algorithms
 - As a function of past algorithms, prices, and number of past consumers
 - In this talk, not as a function of clock time of consumer and revision arrivals

$$v_j = \frac{r}{\lambda + r} \times \mathbb{E}\left[\sum_{n=1}^{\infty} \exp(-ry_n)\pi_j(p_n)\right]$$

$$v_{j} = \frac{r}{\lambda + r} \times \mathbb{E}\left[\sum_{n=1}^{\infty} \exp(-ry_{n})\pi_{j}(p_{n})\right]$$
$$= \frac{r}{\lambda + r} \times \sum_{n=1}^{\infty} \mathbb{E}\left[\exp(-ry_{n})\right] \mathbb{E}\left[\pi_{j}(p_{n})\right]$$

$$v_j = \frac{r}{\lambda + r} \times \mathbb{E}\left[\sum_{n=1}^{\infty} \exp(-ry_n)\pi_j(p_n)\right]$$

$$= \frac{r}{\lambda + r} \times \sum_{n=1}^{\infty} \mathbb{E}[\exp(-ry_n)] \mathbb{E}[\pi_j(p_n)]$$
$$= \frac{r}{\lambda + r} \times \sum_{n=1}^{\infty} \left(\frac{\lambda}{\lambda + r}\right)^n \mathbb{E}[\pi_j(p_n)]$$

$$v_j = \frac{r}{\lambda + r} \times \sum_{n=1}^{\infty} \left(\frac{\lambda}{\lambda + r}\right)^n \mathbb{E}\left[\pi_j(p_n)\right]$$

- Firms maximize (normalized) expected discounted profits

$$v_j = \frac{r}{\lambda + r} \times \sum_{n=1}^{\infty} \left(\frac{\lambda}{\lambda + r}\right)^n \mathbb{E}\left[\pi_j(p_n)\right]$$

• Sub-game perfect Nash equilibria $s \in S^*$

- Firms maximize (normalized) expected discounted profits

$$v_j = \frac{r}{\lambda + r} \times \sum_{n=1}^{\infty} \left(\frac{\lambda}{\lambda + r}\right)^n \mathbb{E}\left[\pi_j(p_n)\right]$$

- Sub-game perfect Nash equilibria $s \in S^*$
- Using Levy (2015) and Mertens and Parthasarathy (1987)

If the profit function π is bounded (and Borel measurable), then the dynamic game has an equilibrium

1. introduction

2. example

3. model

4. main result

5. closing remarks

• Fix any interest rate r and any constant $\varepsilon > 0$

- Fix any interest rate r and any constant $\varepsilon>0$
- Let t₀ be the (random) first date at which each of the two firms has had at least one revision opportunity

- Fix any interest rate r and any constant $\varepsilon>0$
- Let *t*₀ be the (random) first date at which each of the two firms has had at least one revision opportunity
- If costumers arrive frequently $\lambda > r\underline{\lambda}$
- And revisions are infrequent $0 < \mu < r \bar{\mu}(\varepsilon, \lambda)$

- Fix any interest rate r and any constant $\varepsilon>0$
- Let t₀ be the (random) first date at which each of the two firms has had at least one revision opportunity
- If costumers arrive frequently $\lambda > r\underline{\lambda}$
- And revisions are infrequent $0 < \mu < r\bar{\mu}(\varepsilon, \lambda)$
- For any date τ ≥ t₀ the joint continuation profits are closer than ε from the joint monopolistic profits with probability greater than (1 − ε) in any equilibrium, i.e.

$$\inf_{s\in S^*} \Pr_s\left(\bar{v}_\tau > \bar{\pi}^M - \varepsilon\right) > 1 - \varepsilon$$

- Suppose current algorithms induce a sequence of profits π^n
- Expected discounted profits can be decomposed as

$$v_j = \mathbb{E}\left[\underbrace{\exp(-rz_1)}_{\substack{\text{discounting}\\\text{to first event}}} \left(\underbrace{\mathbbm{1}_0 \cdot \left(\frac{r}{\lambda}\pi_j^1 + w^0\right)}_{\text{consumer}} + \underbrace{\mathbbm{1}_1 \cdot w_j^1 + \mathbbm{1}_2 \cdot w_j^2}_{\text{revisions}}\right)\right]$$

- Suppose current algorithms induce a sequence of profits π^n
- Expected discounted profits can be decomposed as

$$\begin{aligned} v_j &= \mathbb{E}\left[\underbrace{\exp(-rz_1)}_{\substack{\text{discounting}\\\text{to first event}}} \left(\underbrace{\mathbb{1}_0 \cdot \left(\frac{r}{\lambda}\pi_j^1 + w^0\right)}_{\text{consumer}} + \underbrace{\mathbb{1}_1 \cdot w_j^1 + \mathbb{1}_2 \cdot w_j^2}_{\text{revisions}}\right)\right] \\ &= \underbrace{\mathbb{E}[\exp(-rz_1)]}_{\text{discounting}}\left[\underbrace{\Pr(0)\left(\frac{r}{\lambda}\pi_j^1 + w_j^0\right)}_{\text{consumer}} + \underbrace{\Pr(1)w_j^1 + \Pr(2)w_j^2}_{\text{revsion}}\right] \end{aligned}$$

- Suppose current algorithms induce a sequence of profits π^n
- Expected discounted profits can be decomposed as

- Suppose current algorithms induce a sequence of profits π^n
- Expected discounted profits can be decomposed as

$$v_j = \frac{r}{r+\lambda+2\mu}\pi_j^1 + \frac{\lambda}{r+\lambda+2\mu}w_j^0 + \frac{\mu}{r+\lambda+2\mu}w_j^1 + \frac{\mu}{r+\lambda+2\mu}w_j^2$$

- Suppose current algorithms induce a sequence of profits π^n
- Expected discounted profits can be decomposed as

$$v_j = \frac{r}{r+\lambda+2\mu}\pi_j^1 + \frac{\lambda}{r+\lambda+2\mu}w_j^0 + \frac{\mu}{r+\lambda+2\mu}w_j^1 + \frac{\mu}{r+\lambda+2\mu}w_j^2$$

Iterating this process yields

$$v_j = \frac{r}{r+2\mu} (1-\beta) \sum_{k=0}^{\infty} \beta^k \pi_j^k + \frac{2\mu}{r+2\mu} \tilde{w}_j$$

where $\beta = \lambda/(r+\lambda+2\mu)$

In any equilibrium,if firm -j observes a_j^0 , it chooses an algorithm that mimics a_{-j}^0 for at least $N = c_1(p^0)\frac{r}{\mu} - c_0$ consumers

If $\frac{\mu}{r} < \bar{\mu}(\varepsilon, \lambda)$, then continuation values at the moment of each revision after the first one are close to the Pareto frontier of Π^j

Revision continuation joint profits after t_0 are close enough to π^M so that, after the second revision, long run profits remain high

additional results

- The four key features of the model are necessary for the main result $\
 ightarrow$
- Firms are willing to make their algorithms transparent and benefit from being less flexible
- Pricing algorithms enable collusion between impatient firms

1. introduction

2. example

3. model

4. main result

5. closing remarks

tacit collusion

- Internal organization of the firm matters
- Pricing algorithms provide predictability and stability
- May not only enable *tacit* collusion, but inevitably lead to it in the long run
- Regulation of transparent/public algorithms and algorithm patterns

efficient renegotiation

- Explicit negotiation protocols leading to efficient outcomes
- Inefficient equilibria exist in repeated games because
 - Strategies are chosen independently
 - There are no opportunities to renegotiate
- The ability to revise initial choices and learn about future intentions of other players can restore efficiency in the long run

work in progress

- Minor extensions
 - Calibration
 - General profit functions
 - Restriction to pure strategies

work in progress

- Minor extensions
 - Calibration
 - General profit functions
 - Restriction to pure strategies
- For the next paper
 - Can learning substitute observability?
 - Can incomplete information substitute commitment?

Thank you for your attention!

paper available at brunosalcedo.com

contact me at bruno@psu.edu

Ü///

tightness

- Responsiveness
- Observability
- Short-term commitment
- Long-term flexibility
- Responsiveness
 - Suppose firms choose prices instead of algorithms
 - Deviating from the static equilibrium of the stage game would be costly if there are no revisions
- Observability
- Short-term commitment
- Long-term flexibility

- Responsiveness
 - Suppose firms choose prices instead of algorithms
 - Deviating from the static equilibrium of the stage game would be costly if there are no revisions
 - Not necessary for all games (Ambrus & Ishii, 2015)
- Observability
- Short-term commitment
- Long-term flexibility

- Responsiveness
- Observability
 - If firm $2\ {\rm cannot}\ {\rm decode}\ {\rm firm}\ 1{\rm 's}\ {\rm algorithm}\ {\rm it}\ {\rm cannot}\ {\rm react}\ {\rm to}\ {\rm it}$
- Short-term commitment
- Long-term flexibility

- Responsiveness
- Observability
 - If firm $2\ {\rm cannot}\ {\rm decode}\ {\rm firm}\ 1{\rm 's}\ {\rm algorithm}\ {\rm it}\ {\rm cannot}\ {\rm react}\ {\rm to}\ {\rm it}$
 - Might not be necessary under imperfect monitoring (work in progress)
- Short-term commitment
- Long-term flexibility

- Responsiveness
- Observability
- Short-term commitment
 - If firm 2 believes that firm 1 will change its algorithm back to "always Bertrand" it is optimal to do the same
 - The result hinges on high commitment $(\mu pprox 0)$
- Long-term flexibility

- Responsiveness
- Observability
- Short-term commitment
- Long-term flexibility
 - If there are no revisions choosing "always Bertrand" is an equilibrium
 - The result hinges on imperfect commitment $(\mu > 0)$

asymmetry and leadership

- Fix any any λ and r
- Take limits when firm 1 is completely committed and firm 2 can revise arbitrarily often

asymmetry and leadership

- Fix any any λ and r
- Take limits when firm 1 is completely committed and firm 2 can revise arbitrarily often
- Firm 1's expected discounted profits in any equilibrium become weakly greater than its dynamic Stackelberg payoff, i.e.,

$$\lim_{\mu_1 \to 0} \lim_{\mu_2 \to \infty} \inf_{s \in S^*} v_1(s) \ge \pi_1^S(\lambda, r)$$

where

$$\pi_1^S(\lambda, r) := \max\left\{ v_j(a) \mid a_{-j} \in \operatorname*{arg\,max}_{a'_{-j}} v_{-j}(aj, a'_{-j}) \right\}$$

impatient firms

- Fix any any λ and r
- Take limits as revision opportunities become arbitrarily frequent

impatient firms

- Fix any any λ and r
- Take limits as revision opportunities become arbitrarily frequent
- There joint profits in the best symmetric equilibrium converge to the joint monopolistic profits, i.e.,

$$\lim_{\mu \to 0} \sup \left\{ v \mid (v, v) \in V^*(\lambda, \mu, r) \right\} = \pi^M$$